Model description
An XLM-RoBERTa reading comprehension model for SQuAD 1.1.
The model is initialized with xlm-roberta-large and fine-tuned on the SQuAD 1.1 train data.
Intended uses & limitations
You can use the raw model for the reading comprehension task. Biases associated with the pre-existing language model, xlm-roberta-large, that we used may be present in our fine-tuned model, squad-v1-xlm-roberta-large. This model is used for zero-shot decoding of MLQA and XQuAD datasets.
Usage
You can use this model directly with the PrimeQA pipeline for reading comprehension squad.ipynb.
@article{2016arXiv160605250R,
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
Konstantin and {Liang}, Percy},
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
journal = {arXiv e-prints},
year = 2016,
eid = {arXiv:1606.05250},
pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
eprint = {1606.05250},
}
@article{lewis2019mlqa,
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
journal={arXiv preprint arXiv:1910.07475},
year={2019}
}
@article{Artetxe:etal:2019,
author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama},
title = {On the cross-lingual transferability of monolingual representations},
journal = {CoRR},
volume = {abs/1910.11856},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.11856}
}
@article{DBLP:journals/corr/abs-1911-02116,
author = {Alexis Conneau and
Kartikay Khandelwal and
Naman Goyal and
Vishrav Chaudhary and
Guillaume Wenzek and
Francisco Guzm{\'{a}}n and
Edouard Grave and
Myle Ott and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {Unsupervised Cross-lingual Representation Learning at Scale},
journal = {CoRR},
volume = {abs/1911.02116},
year = {2019},
url = {http://arxiv.org/abs/1911.02116},
eprinttype = {arXiv},
eprint = {1911.02116},
timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
- Downloads last month
- 8