metadata
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
license: apache-2.0
tags:
- merge
datasets:
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/stheno-filtered-v1.1
- PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
pipeline_tag: text-generation
model-index:
- name: Violet_Twilight-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 45.32
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 23.94
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.72
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.13
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.61
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Violet_Twilight-v0.2
name: Open LLM Leaderboard
QuantFactory/Violet_Twilight-v0.2-GGUF
This is quantized version of Epiculous/Violet_Twilight-v0.2 created using llama.cpp
Original Model Card
Now for something a bit different, Violet_Twilight-v0.2! This model is a SLERP merge of Azure_Dusk-v0.2 and Crimson_Dawn-v0.2!
Quants!
Prompting
The v0.2 models are trained on ChatML, the prompting structure goes a little something like this:
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
Context and Instruct
The v0.2 models are trained on ChatML, please use that Context and Instruct template.
Current Top Sampler Settings
Spicy_Temp
Violet_Twilight-Nitral-Special
Merging
The following config was used to merge Azure Dusk and Crimson Dawn
slices:
- sources:
- model: Epiculous/Azure_Dusk-v0.2
layer_range: [0, 40]
- model: Epiculous/Crimson_Dawn-V0.2
layer_range: [0, 40]
merge_method: slerp
base_model: Epiculous/Azure_Dusk-v0.2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 18.53 |
IFEval (0-Shot) | 45.32 |
BBH (3-Shot) | 23.94 |
MATH Lvl 5 (4-Shot) | 2.72 |
GPQA (0-shot) | 2.13 |
MuSR (0-shot) | 13.61 |
MMLU-PRO (5-shot) | 23.45 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 18.53 |
IFEval (0-Shot) | 45.32 |
BBH (3-Shot) | 23.94 |
MATH Lvl 5 (4-Shot) | 2.72 |
GPQA (0-shot) | 2.13 |
MuSR (0-shot) | 13.61 |
MMLU-PRO (5-shot) | 23.45 |