YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
license: apache-2.0
Model Card for AtomThink-LLaVA-Llama3-8B
The model is fine-tuned based on LLaVA-Llama3-8B and AtomThink framework, and can be used to solve complex multimodal mathematical problems.
Comparison of accuracy with state-of-the-art methods on MathVista and MathVerse:
Model | Inference | General | Math | Total | TL | TD | VI | VD | VO | Total |
---|---|---|---|---|---|---|---|---|---|---|
Random Choice | - | - | - | 17.9 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 |
Human | - | - | - | - | 70.9 | 71.2 | 61.4 | 68.3 | 66.7 | 66.7 |
OpenAI o1 | Slow Think* | - | - | 73.9 | - | - | - | - | - | - |
GPT-4o | CoT | - | - | 63.8 | - | - | - | - | - | - |
GPT-4V | CoT | - | - | 49.9 | 56.6 | 63.1 | 51.4 | 50.8 | 50.3 | 54.4 |
LLaVA-NeXT-34B | Direct | - | - | 46.5 | 25.5 | 33.8 | 23.5 | 20.3 | 15.7 | 23.8 |
InternLM-XComposer2 | Direct | - | - | 57.6 | 17.0 | 22.3 | 15.7 | 16.4 | 11.0 | 16.5 |
Qwen-VL-Plus | Direct | - | - | 43.3 | 11.1 | 15.7 | 9.0 | 13.0 | 10.0 | 11.8 |
LLaVA-1.5-13B | Direct | - | - | 27.6 | 15.2 | 19.4 | 16.8 | 15.2 | 11.3 | 15.6 |
G-LLaVA-7B | Direct | - | - | 53.4 | 20.7 | 20.9 | 17.2 | 14.6 | 9.4 | 16.6 |
MAVIS-7B | Direct | - | - | - | 29.1 | 41.4 | 27.4 | 24.9 | 14.6 | 27.5 |
LLaVA-Llama3-8B | Direct | 34.1 | 25.6 | 29.5 | 16.0 | 19.3 | 16.4 | 13.1 | 15.0 | 15.9 |
LLaVA w/. Formatted | CoT | 30.2 | 22.9 | 26.3 | 14.3 | 18.4 | 15.7 | 10.0 | 7.7 | 13.2 |
AtomThink-LLaVA | Direct | 34.4 | 27.2 | 30.5 | 16.0 | 19.3 | 16.2 | 13.1 | 15.0 | 15.9 |
AtomThink-LLaVA | Quick Think | 36.9 | 37.0 | 36.6 | 22.2 | 26.6 | 24.1 | 20.9 | 17.9 | 22.4 |
AtomThink-LLaVA | Slow Think | 36.5 | 41.3 | 39.1 | 36.1 | 42.4 | 30.0 | 36.8 | 28.6 | 34.7 |
Citation
If you use this dataset in your research, please cite:
@article{xiang2024atomthink,
title={AtomThink: A Slow Thinking Framework for Multimodal Mathematical Reasoning},
author={Xiang, Kun and Liu, Zhili and Jiang, Zihao and Nie, Yunshuang and Huang, Runhui and Fan, Haoxiang and Li, Hanhui and Huang, Weiran and Zeng, Yihan and Han, Jianhua and others},
journal={arXiv preprint arXiv:2411.11930},
year={2024}
}
@article{liu2024visual,
title={Visual instruction tuning},
author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
journal={Advances in neural information processing systems},
volume={36},
year={2024}
}
License
The checkpoint is released under the Apache 2.0 license. Please ensure proper attribution when using this checkpoint.
- Downloads last month
- 22