flan-t5-base-finetuned-QLoRA
This model is a fine-tuned version of google/flan-t5-base on the cnn_dailymail dataset. It achieves the following results on the evaluation set:
- Loss: 1.0780
- Rouge1: 0.2435
- Rouge2: 0.1079
- Rougel: 0.1991
- Rougelsum: 0.2302
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
12.7942 | 1.0 | 250 | 10.7766 | 0.2346 | 0.1022 | 0.1834 | 0.2154 |
3.0774 | 2.0 | 500 | 2.5061 | 0.2351 | 0.1094 | 0.197 | 0.2204 |
2.1947 | 3.0 | 750 | 1.4702 | 0.2403 | 0.1104 | 0.1997 | 0.2261 |
1.7687 | 4.0 | 1000 | 1.2326 | 0.247 | 0.1148 | 0.2024 | 0.2307 |
1.4731 | 5.0 | 1250 | 1.1516 | 0.2538 | 0.1203 | 0.2074 | 0.2381 |
1.4802 | 6.0 | 1500 | 1.1120 | 0.2432 | 0.1102 | 0.1993 | 0.2271 |
1.3568 | 7.0 | 1750 | 1.0945 | 0.2427 | 0.1089 | 0.1991 | 0.2279 |
1.4054 | 8.0 | 2000 | 1.0843 | 0.2428 | 0.1076 | 0.1993 | 0.2293 |
1.3151 | 9.0 | 2250 | 1.0795 | 0.2432 | 0.1076 | 0.1991 | 0.2299 |
1.2669 | 10.0 | 2500 | 1.0780 | 0.2435 | 0.1079 | 0.1991 | 0.2302 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 24
Inference API (serverless) does not yet support peft models for this pipeline type.
Model tree for RMWeerasinghe/flan-t5-base-finetuned-QLoRA
Base model
google/flan-t5-base