Rajaram Sivaramakrishnan
commited on
Commit
·
a66c39d
1
Parent(s):
12c8ba0
update prediction script
Browse files
README.md
CHANGED
@@ -40,8 +40,8 @@ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
40 |
|
41 |
test_dataset = load_dataset("common_voice", "ta", split="test[:2%]")
|
42 |
|
43 |
-
processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-tamil")
|
44 |
-
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-tamil")
|
45 |
|
46 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
47 |
|
@@ -49,16 +49,16 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
49 |
# We need to read the aduio files as arrays
|
50 |
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
-
|
61 |
-
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
64 |
print("Reference:", test_dataset["sentence"][:2])
|
@@ -83,7 +83,7 @@ processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-5
|
|
83 |
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
|
84 |
|
85 |
model.to("cuda")
|
86 |
-
chars_to_ignore_regex = '[
|
87 |
|
88 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
89 |
|
|
|
40 |
|
41 |
test_dataset = load_dataset("common_voice", "ta", split="test[:2%]")
|
42 |
|
43 |
+
processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
|
44 |
+
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
|
45 |
|
46 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
47 |
|
|
|
49 |
# We need to read the aduio files as arrays
|
50 |
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
return batch
|
55 |
+
|
56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
+
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
64 |
print("Reference:", test_dataset["sentence"][:2])
|
|
|
83 |
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
|
84 |
|
85 |
model.to("cuda")
|
86 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
|
87 |
|
88 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
89 |
|