distilhubert-finetuned-gtzan-2

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9149
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0823 1.0 113 2.0903 0.46
1.5111 2.0 226 1.5342 0.6
1.2342 3.0 339 1.1036 0.68
0.8352 4.0 452 0.9137 0.78
0.5727 5.0 565 0.6258 0.81
0.3957 6.0 678 0.5984 0.83
0.1851 7.0 791 0.6269 0.82
0.1607 8.0 904 0.6945 0.79
0.1426 9.0 1017 0.6103 0.86
0.0519 10.0 1130 0.7502 0.81
0.0097 11.0 1243 0.7101 0.85
0.006 12.0 1356 0.8174 0.82
0.0039 13.0 1469 0.8008 0.84
0.0032 14.0 1582 0.8438 0.81
0.0027 15.0 1695 0.8206 0.82
0.0024 16.0 1808 0.8563 0.82
0.002 17.0 1921 0.8884 0.82
0.0018 18.0 2034 0.9148 0.82
0.0018 19.0 2147 0.9017 0.83
0.0016 20.0 2260 0.9178 0.83
0.0015 21.0 2373 0.9070 0.83
0.0014 22.0 2486 0.9033 0.83
0.0014 23.0 2599 0.8975 0.84
0.0013 24.0 2712 0.9160 0.83
0.0013 25.0 2825 0.9149 0.83

Framework versions

  • Transformers 4.29.0
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
159
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train RajkNakka/distilhubert-finetuned-gtzan-2