update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilhubert-finetuned-gtzan-2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilhubert-finetuned-gtzan-2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9149
|
22 |
+
- Accuracy: 0.83
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 25
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 2.0823 | 1.0 | 113 | 2.0903 | 0.46 |
|
56 |
+
| 1.5111 | 2.0 | 226 | 1.5342 | 0.6 |
|
57 |
+
| 1.2342 | 3.0 | 339 | 1.1036 | 0.68 |
|
58 |
+
| 0.8352 | 4.0 | 452 | 0.9137 | 0.78 |
|
59 |
+
| 0.5727 | 5.0 | 565 | 0.6258 | 0.81 |
|
60 |
+
| 0.3957 | 6.0 | 678 | 0.5984 | 0.83 |
|
61 |
+
| 0.1851 | 7.0 | 791 | 0.6269 | 0.82 |
|
62 |
+
| 0.1607 | 8.0 | 904 | 0.6945 | 0.79 |
|
63 |
+
| 0.1426 | 9.0 | 1017 | 0.6103 | 0.86 |
|
64 |
+
| 0.0519 | 10.0 | 1130 | 0.7502 | 0.81 |
|
65 |
+
| 0.0097 | 11.0 | 1243 | 0.7101 | 0.85 |
|
66 |
+
| 0.006 | 12.0 | 1356 | 0.8174 | 0.82 |
|
67 |
+
| 0.0039 | 13.0 | 1469 | 0.8008 | 0.84 |
|
68 |
+
| 0.0032 | 14.0 | 1582 | 0.8438 | 0.81 |
|
69 |
+
| 0.0027 | 15.0 | 1695 | 0.8206 | 0.82 |
|
70 |
+
| 0.0024 | 16.0 | 1808 | 0.8563 | 0.82 |
|
71 |
+
| 0.002 | 17.0 | 1921 | 0.8884 | 0.82 |
|
72 |
+
| 0.0018 | 18.0 | 2034 | 0.9148 | 0.82 |
|
73 |
+
| 0.0018 | 19.0 | 2147 | 0.9017 | 0.83 |
|
74 |
+
| 0.0016 | 20.0 | 2260 | 0.9178 | 0.83 |
|
75 |
+
| 0.0015 | 21.0 | 2373 | 0.9070 | 0.83 |
|
76 |
+
| 0.0014 | 22.0 | 2486 | 0.9033 | 0.83 |
|
77 |
+
| 0.0014 | 23.0 | 2599 | 0.8975 | 0.84 |
|
78 |
+
| 0.0013 | 24.0 | 2712 | 0.9160 | 0.83 |
|
79 |
+
| 0.0013 | 25.0 | 2825 | 0.9149 | 0.83 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.29.0
|
85 |
+
- Pytorch 2.0.1
|
86 |
+
- Datasets 2.12.0
|
87 |
+
- Tokenizers 0.13.2
|