RajkNakka commited on
Commit
94c0ffa
·
1 Parent(s): 0ad62b1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-gtzan-2
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilhubert-finetuned-gtzan-2
18
+
19
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.9149
22
+ - Accuracy: 0.83
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 25
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 2.0823 | 1.0 | 113 | 2.0903 | 0.46 |
56
+ | 1.5111 | 2.0 | 226 | 1.5342 | 0.6 |
57
+ | 1.2342 | 3.0 | 339 | 1.1036 | 0.68 |
58
+ | 0.8352 | 4.0 | 452 | 0.9137 | 0.78 |
59
+ | 0.5727 | 5.0 | 565 | 0.6258 | 0.81 |
60
+ | 0.3957 | 6.0 | 678 | 0.5984 | 0.83 |
61
+ | 0.1851 | 7.0 | 791 | 0.6269 | 0.82 |
62
+ | 0.1607 | 8.0 | 904 | 0.6945 | 0.79 |
63
+ | 0.1426 | 9.0 | 1017 | 0.6103 | 0.86 |
64
+ | 0.0519 | 10.0 | 1130 | 0.7502 | 0.81 |
65
+ | 0.0097 | 11.0 | 1243 | 0.7101 | 0.85 |
66
+ | 0.006 | 12.0 | 1356 | 0.8174 | 0.82 |
67
+ | 0.0039 | 13.0 | 1469 | 0.8008 | 0.84 |
68
+ | 0.0032 | 14.0 | 1582 | 0.8438 | 0.81 |
69
+ | 0.0027 | 15.0 | 1695 | 0.8206 | 0.82 |
70
+ | 0.0024 | 16.0 | 1808 | 0.8563 | 0.82 |
71
+ | 0.002 | 17.0 | 1921 | 0.8884 | 0.82 |
72
+ | 0.0018 | 18.0 | 2034 | 0.9148 | 0.82 |
73
+ | 0.0018 | 19.0 | 2147 | 0.9017 | 0.83 |
74
+ | 0.0016 | 20.0 | 2260 | 0.9178 | 0.83 |
75
+ | 0.0015 | 21.0 | 2373 | 0.9070 | 0.83 |
76
+ | 0.0014 | 22.0 | 2486 | 0.9033 | 0.83 |
77
+ | 0.0014 | 23.0 | 2599 | 0.8975 | 0.84 |
78
+ | 0.0013 | 24.0 | 2712 | 0.9160 | 0.83 |
79
+ | 0.0013 | 25.0 | 2825 | 0.9149 | 0.83 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.29.0
85
+ - Pytorch 2.0.1
86
+ - Datasets 2.12.0
87
+ - Tokenizers 0.13.2