multi-label-class-classification-on-github-issues

This model is a fine-tuned version of neuralmagic/oBERT-12-upstream-pruned-unstructured-97 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1077
  • Micro f1: 0.6520
  • Macro f1: 0.0704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Micro f1 Macro f1
No log 1.0 49 0.2835 0.3791 0.0172
No log 2.0 98 0.1710 0.3791 0.0172
No log 3.0 147 0.1433 0.3791 0.0172
No log 4.0 196 0.1333 0.4540 0.0291
No log 5.0 245 0.1247 0.5206 0.0352
No log 6.0 294 0.1173 0.6003 0.0541
No log 7.0 343 0.1125 0.6315 0.0671
No log 8.0 392 0.1095 0.6439 0.0699
No log 9.0 441 0.1072 0.6531 0.0713
No log 10.0 490 0.1075 0.6397 0.0695
0.1605 11.0 539 0.1074 0.6591 0.0711
0.1605 12.0 588 0.1043 0.6462 0.0703
0.1605 13.0 637 0.1049 0.6541 0.0709
0.1605 14.0 686 0.1051 0.6524 0.0713
0.1605 15.0 735 0.1061 0.6535 0.0770
0.1605 16.0 784 0.1034 0.6511 0.0708

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Rami/multi-label-class-classification-on-github-issues 1