metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- generated_from_trainer
- axolotl
language:
- it
- en
pipeline_tag: text-generation
datasets:
- ReDiX/everyday-conversations-ita
- ReDiX/dataforge-cleaned
Qwen2.5-0.5B-Instruct-ITA
This model is a fine-tuned version of Qwen/Qwen2.5-0.5B-Instruct on the ReDiX/DataForge dataset. It achieves the following results on the evaluation set:
- Loss: 1.4100
Model description
This model is an example of finetuning a sLLM. Italian eval improved and the model learned as espected from the training data
Intended uses & limitations
More information needed
Training and evaluation data
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
arc_it | 2 | none | 0 | acc | ↑ | 0.2378 | ± | 0.0125 |
none | 0 | acc_norm | ↑ | 0.2823 | ± | 0.0132 | ||
hellaswag_it | 1 | none | 0 | acc | ↑ | 0.3163 | ± | 0.0049 |
none | 0 | acc_norm | ↑ | 0.3800 | ± | 0.0051 | ||
m_mmlu_it | 0 | none | 5 | acc | ↑ | 0.381 | ± | 0.0042 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
See axolotl config
axolotl version: 0.5.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: ./dataforge
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
# chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qwen05B
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.0.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.1.mlp.down_proj
- model.layers.16.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.17.mlp.down_proj
# mlp.gate_proj layers
- model.layers.0.mlp.gate_proj
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.7.mlp.gate_proj
# mlp.up_proj layers
- model.layers.1.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.4.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.9.mlp.up_proj
# self_attn.k_proj layers
- model.layers.18.self_attn.k_proj
- model.layers.7.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.2.self_attn.k_proj
- model.layers.6.self_attn.k_proj
- model.layers.9.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.16.self_attn.o_proj
- model.layers.19.self_attn.o_proj
- model.layers.0.self_attn.o_proj
- model.layers.20.self_attn.o_proj
- model.layers.4.self_attn.o_proj
- model.layers.3.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.13.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.21.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.6.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.2.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.5.self_attn.v_proj
- model.layers.7.self_attn.v_proj
- model.layers.8.self_attn.v_proj
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: qwen2.5-0.5B
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1.0e-04
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 5
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|im_end|>"
eos_token: "<|im_end|>"
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0013 | 1 | 1.7855 |
1.2567 | 0.2504 | 194 | 1.5639 |
1.2551 | 0.5008 | 388 | 1.4980 |
1.1845 | 0.7512 | 582 | 1.4501 |
1.3178 | 1.0019 | 776 | 1.4252 |
1.06 | 1.2523 | 970 | 1.4187 |
1.0697 | 1.5027 | 1164 | 1.4116 |
1.0362 | 1.7531 | 1358 | 1.4100 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3