llama7b_rulm_small_1e_17_10_23
This model is a fine-tuned version of TheBloke/Llama-2-7B-fp16 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0955
- Accuracy: 0.5405
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 14
- gradient_accumulation_steps: 2
- total_train_batch_size: 336
- total_eval_batch_size: 168
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2009 | 0.01 | 1000 | 2.1993 | 0.5228 |
2.1902 | 0.02 | 2000 | 2.1843 | 0.5246 |
2.179 | 0.02 | 3000 | 2.1763 | 0.5261 |
2.1773 | 0.03 | 4000 | 2.1722 | 0.5270 |
2.1708 | 0.04 | 5000 | 2.1679 | 0.5274 |
2.1695 | 0.05 | 6000 | 2.1648 | 0.5279 |
2.1662 | 0.05 | 7000 | 2.1638 | 0.5284 |
2.1635 | 0.06 | 8000 | 2.1613 | 0.5285 |
2.1668 | 0.07 | 9000 | 2.1595 | 0.5289 |
2.1597 | 0.08 | 10000 | 2.1580 | 0.5294 |
2.1593 | 0.08 | 11000 | 2.1572 | 0.5294 |
2.1561 | 0.09 | 12000 | 2.1556 | 0.5296 |
2.1525 | 0.1 | 13000 | 2.1543 | 0.5298 |
2.1557 | 0.11 | 14000 | 2.1534 | 0.5297 |
2.1547 | 0.12 | 15000 | 2.1526 | 0.5299 |
2.1544 | 0.12 | 16000 | 2.1516 | 0.5303 |
2.1562 | 0.13 | 17000 | 2.1512 | 0.5304 |
2.1515 | 0.14 | 18000 | 2.1506 | 0.5303 |
2.1516 | 0.15 | 19000 | 2.1488 | 0.5307 |
2.1519 | 0.15 | 20000 | 2.1493 | 0.5305 |
2.1506 | 0.16 | 21000 | 2.1474 | 0.5311 |
2.1484 | 0.17 | 22000 | 2.1483 | 0.5310 |
2.1533 | 0.18 | 23000 | 2.1471 | 0.5312 |
2.1471 | 0.18 | 24000 | 2.1470 | 0.5310 |
2.1421 | 0.19 | 25000 | 2.1454 | 0.5313 |
2.1452 | 0.2 | 26000 | 2.1452 | 0.5314 |
2.1481 | 0.21 | 27000 | 2.1438 | 0.5317 |
2.149 | 0.22 | 28000 | 2.1441 | 0.5317 |
2.1483 | 0.22 | 29000 | 2.1435 | 0.5315 |
2.1453 | 0.23 | 30000 | 2.1428 | 0.5319 |
2.1442 | 0.24 | 31000 | 2.1425 | 0.5320 |
2.1411 | 0.25 | 32000 | 2.1413 | 0.5322 |
2.1418 | 0.25 | 33000 | 2.1409 | 0.5322 |
2.1394 | 0.26 | 34000 | 2.1409 | 0.5323 |
2.1415 | 0.27 | 35000 | 2.1403 | 0.5323 |
2.139 | 0.28 | 36000 | 2.1404 | 0.5321 |
2.1403 | 0.28 | 37000 | 2.1394 | 0.5324 |
2.1382 | 0.29 | 38000 | 2.1395 | 0.5325 |
2.1375 | 0.3 | 39000 | 2.1392 | 0.5323 |
2.1403 | 0.31 | 40000 | 2.1382 | 0.5328 |
2.1385 | 0.31 | 41000 | 2.1378 | 0.5328 |
2.1356 | 0.32 | 42000 | 2.1371 | 0.5328 |
2.1388 | 0.33 | 43000 | 2.1370 | 0.5330 |
2.1347 | 0.34 | 44000 | 2.1361 | 0.5329 |
2.1384 | 0.35 | 45000 | 2.1357 | 0.5332 |
2.1391 | 0.35 | 46000 | 2.1352 | 0.5333 |
2.1342 | 0.36 | 47000 | 2.1356 | 0.5330 |
2.1319 | 0.37 | 48000 | 2.1347 | 0.5334 |
2.1305 | 0.38 | 49000 | 2.1345 | 0.5334 |
2.1312 | 0.38 | 50000 | 2.1339 | 0.5334 |
2.1352 | 0.39 | 51000 | 2.1334 | 0.5336 |
2.1342 | 0.4 | 52000 | 2.1335 | 0.5339 |
2.1355 | 0.41 | 53000 | 2.1318 | 0.5339 |
2.1333 | 0.41 | 54000 | 2.1320 | 0.5340 |
2.1315 | 0.42 | 55000 | 2.1316 | 0.5338 |
2.1316 | 0.43 | 56000 | 2.1311 | 0.5340 |
2.1332 | 0.44 | 57000 | 2.1309 | 0.5339 |
2.1258 | 0.45 | 58000 | 2.1298 | 0.5341 |
2.1302 | 0.45 | 59000 | 2.1293 | 0.5345 |
2.1318 | 0.46 | 60000 | 2.1287 | 0.5345 |
2.1247 | 0.47 | 61000 | 2.1289 | 0.5342 |
2.1282 | 0.48 | 62000 | 2.1276 | 0.5345 |
2.1225 | 0.48 | 63000 | 2.1276 | 0.5346 |
2.1288 | 0.49 | 64000 | 2.1265 | 0.5344 |
2.1281 | 0.5 | 65000 | 2.1261 | 0.5346 |
2.1267 | 0.51 | 66000 | 2.1256 | 0.5348 |
2.1252 | 0.51 | 67000 | 2.1256 | 0.5349 |
2.1237 | 0.52 | 68000 | 2.1258 | 0.5349 |
2.1264 | 0.53 | 69000 | 2.1243 | 0.5353 |
2.1245 | 0.54 | 70000 | 2.1243 | 0.5352 |
2.1235 | 0.55 | 71000 | 2.1239 | 0.5352 |
2.1261 | 0.55 | 72000 | 2.1224 | 0.5357 |
2.1218 | 0.56 | 73000 | 2.1219 | 0.5355 |
2.1205 | 0.57 | 74000 | 2.1219 | 0.5356 |
2.1229 | 0.58 | 75000 | 2.1215 | 0.5355 |
2.1199 | 0.58 | 76000 | 2.1207 | 0.5358 |
2.1175 | 0.59 | 77000 | 2.1205 | 0.5358 |
2.1205 | 0.6 | 78000 | 2.1201 | 0.5359 |
2.1206 | 0.61 | 79000 | 2.1194 | 0.5362 |
2.1183 | 0.61 | 80000 | 2.1191 | 0.5361 |
2.1242 | 0.62 | 81000 | 2.1189 | 0.5361 |
2.1214 | 0.63 | 82000 | 2.1179 | 0.5361 |
2.1185 | 0.64 | 83000 | 2.1172 | 0.5362 |
2.1172 | 0.65 | 84000 | 2.1176 | 0.5362 |
2.1159 | 0.65 | 85000 | 2.1167 | 0.5367 |
2.1162 | 0.66 | 86000 | 2.1158 | 0.5367 |
2.1134 | 0.67 | 87000 | 2.1160 | 0.5367 |
2.1158 | 0.68 | 88000 | 2.1149 | 0.5369 |
2.1183 | 0.68 | 89000 | 2.1146 | 0.5371 |
2.1172 | 0.69 | 90000 | 2.1138 | 0.5371 |
2.1192 | 0.7 | 91000 | 2.1133 | 0.5370 |
2.1107 | 0.71 | 92000 | 2.1130 | 0.5372 |
2.1159 | 0.71 | 93000 | 2.1124 | 0.5375 |
2.113 | 0.72 | 94000 | 2.1120 | 0.5374 |
2.1151 | 0.73 | 95000 | 2.1113 | 0.5375 |
2.1117 | 0.74 | 96000 | 2.1107 | 0.5376 |
2.1111 | 0.75 | 97000 | 2.1104 | 0.5375 |
2.109 | 0.75 | 98000 | 2.1103 | 0.5378 |
2.1121 | 0.76 | 99000 | 2.1098 | 0.5379 |
2.1075 | 0.77 | 100000 | 2.1089 | 0.5377 |
2.1094 | 0.78 | 101000 | 2.1087 | 0.5378 |
2.1113 | 0.78 | 102000 | 2.1079 | 0.5381 |
2.1065 | 0.79 | 103000 | 2.1077 | 0.5380 |
2.107 | 0.8 | 104000 | 2.1071 | 0.5382 |
2.109 | 0.81 | 105000 | 2.1067 | 0.5385 |
2.1049 | 0.81 | 106000 | 2.1060 | 0.5384 |
2.1071 | 0.82 | 107000 | 2.1058 | 0.5386 |
2.1026 | 0.83 | 108000 | 2.1054 | 0.5385 |
2.1059 | 0.84 | 109000 | 2.1048 | 0.5388 |
2.1 | 0.85 | 110000 | 2.1043 | 0.5389 |
2.1017 | 0.85 | 111000 | 2.1038 | 0.5389 |
2.107 | 0.86 | 112000 | 2.1030 | 0.5390 |
2.101 | 0.87 | 113000 | 2.1028 | 0.5392 |
2.0995 | 0.88 | 114000 | 2.1023 | 0.5391 |
2.1076 | 0.88 | 115000 | 2.1018 | 0.5391 |
2.1011 | 0.89 | 116000 | 2.1012 | 0.5394 |
2.1006 | 0.9 | 117000 | 2.1008 | 0.5394 |
2.0955 | 0.91 | 118000 | 2.1004 | 0.5395 |
2.1007 | 0.91 | 119000 | 2.0999 | 0.5396 |
2.1022 | 0.92 | 120000 | 2.0995 | 0.5396 |
2.0978 | 0.93 | 121000 | 2.0990 | 0.5399 |
2.0981 | 0.94 | 122000 | 2.0984 | 0.5399 |
2.0952 | 0.94 | 123000 | 2.0980 | 0.5399 |
2.0962 | 0.95 | 124000 | 2.0974 | 0.5400 |
2.0993 | 0.96 | 125000 | 2.0971 | 0.5402 |
2.0982 | 0.97 | 126000 | 2.0967 | 0.5402 |
2.0962 | 0.98 | 127000 | 2.0964 | 0.5403 |
2.0963 | 0.98 | 128000 | 2.0960 | 0.5404 |
2.0967 | 0.99 | 129000 | 2.0958 | 0.5404 |
2.094 | 1.0 | 130000 | 2.0955 | 0.5405 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for RefalMachine/llm_test_raw
Base model
TheBloke/Llama-2-7B-fp16