YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

phi-2-4bit-64rank - bnb 4bits

Original model description:

license: mit language: - en pipeline_tag: text-generation tags: - 'quantization ' - lora

LoftQ Initialization

| Paper | Code | PEFT Example |

LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W.

This model, phi-2-4bit-64rank, is obtained from phi-2. The backbone is under LoftQ/phi-2-4bit-64rank and LoRA adapters are under the subfolder='loftq_init'.

Model Info

Backbone

  • Stored format: torch.float16
  • Size: ~ 5.5 GiB
  • Loaded format: bitsandbytes nf4
  • Size loaded on GPU: ~1.4 GiB

LoRA adapters

  • rank: 64
  • lora_alpha: 16
  • target_modules: ["q_proj", "k_proj", "v_proj", "dense", "fc1", "fc2"]

Usage

Training Here's an example of loading this model and preparing for the LoRA fine-tuning.

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel

MODEL_ID = "LoftQ/phi-2-4bit-64rank"

base_model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, 
    torch_dtype=torch.float32,  # you may change it with different models
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.float32,  # float32 is tested and veryfied
        bnb_4bit_use_double_quant=False,
        bnb_4bit_quant_type='nf4',
    ),
)
peft_model = PeftModel.from_pretrained(
    base_model,
    MODEL_ID,
    subfolder="loftq_init",
    is_trainable=True,
)

# Do training with peft_model ...

Experiment Results

We have conducted experiments on supervised fine-tuning of GSM8K.

Model Bits Rank LoRA Initial GSM8K
Phi-2 16 - Full model fine-tuning 66.8卤1.2
Phi-2 16 64 Gaussian + 0 (LoRA) 64.8卤0.5
Phi-2 4 64 Gaussian + 0 (QLoRA) 60.2卤0.6
Phi-2 4 64 LoftQ 64.1卤0.7

Inference Here is an example code for inference after the model has been fine-tuned on GSM8K.

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel

MODEL_ID = "LoftQ/phi-2-4bit-64rank"

base_model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, 
    torch_dtype=torch.float32,  # you may change it with different models
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.float32,  # float32 is tested and veryfied
        bnb_4bit_use_double_quant=False,
        bnb_4bit_quant_type='nf4',
    ),
)
peft_model = PeftModel.from_pretrained(
    base_model,
    MODEL_ID,
    subfolder="gsm8k",
    is_trainable=True,
)

# Do inference with peft_model ...

See the full code at our Github Repo

Citation

@article{li2023loftq,
  title={Loftq: Lora-fine-tuning-aware quantization for large language models},
  author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo},
  journal={arXiv preprint arXiv:2310.08659},
  year={2023}
}
Downloads last month
2
Safetensors
Model size
1.56B params
Tensor type
F32
FP16
U8
Inference API
Unable to determine this model's library. Check the docs .