Quantization made by Richard Erkhov.
Gemma2_Virtual_doctor - AWQ
- Model creator: https://huggingface.co/alibidaran/
- Original model: https://huggingface.co/alibidaran/Gemma2_Virtual_doctor/
Original model description:
language: - en license: apache-2.0 library_name: transformers tags: - medical pipeline_tag: text-generation
Model Card for Model ID
Model Details
Model Description
This model is fined tune based on Google's Gemma model for creating virtual doctor or medical Asistant. It can be used in medical and healthcare AI assitant apps and chatbots.
- Developed by: [Ali Bidaran]
Uses
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer
model_id = "alibidaran/Gemma2_Virtual_doctor"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
prompt = " Hi doctor, I feel a pain on my ankle, I walk hardly and with pain what do you recommend me?"
text=f"<s> ###Human: {prompt} ###Asistant: "
inputs=tokenizer(text,return_tensors='pt').to('cuda')
with torch.no_grad():
outputs=model.generate(**inputs,max_new_tokens=200,do_sample=True,top_p=0.92,top_k=10,temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Parameters
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
warmup_steps=2,
#max_steps=200,
num_train_epochs=1,
learning_rate=2e-4,
fp16=True,
logging_steps=100,
output_dir="outputs",
optim="paged_adamw_8bit",
save_steps=500,
ddp_find_unused_parameters=False // for training on multiple GPU