GGUF
Inference Endpoints
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Aira-2-1B1 - GGUF

Name Quant method Size
Aira-2-1B1.Q2_K.gguf Q2_K 0.4GB
Aira-2-1B1.IQ3_XS.gguf IQ3_XS 0.44GB
Aira-2-1B1.IQ3_S.gguf IQ3_S 0.47GB
Aira-2-1B1.Q3_K_S.gguf Q3_K_S 0.47GB
Aira-2-1B1.IQ3_M.gguf IQ3_M 0.48GB
Aira-2-1B1.Q3_K.gguf Q3_K 0.51GB
Aira-2-1B1.Q3_K_M.gguf Q3_K_M 0.51GB
Aira-2-1B1.Q3_K_L.gguf Q3_K_L 0.55GB
Aira-2-1B1.IQ4_XS.gguf IQ4_XS 0.57GB
Aira-2-1B1.Q4_0.gguf Q4_0 0.59GB
Aira-2-1B1.IQ4_NL.gguf IQ4_NL 0.6GB
Aira-2-1B1.Q4_K_S.gguf Q4_K_S 0.6GB
Aira-2-1B1.Q4_K.gguf Q4_K 0.62GB
Aira-2-1B1.Q4_K_M.gguf Q4_K_M 0.62GB
Aira-2-1B1.Q4_1.gguf Q4_1 0.65GB
Aira-2-1B1.Q5_0.gguf Q5_0 0.71GB
Aira-2-1B1.Q5_K_S.gguf Q5_K_S 0.71GB
Aira-2-1B1.Q5_K.gguf Q5_K 0.73GB
Aira-2-1B1.Q5_K_M.gguf Q5_K_M 0.73GB
Aira-2-1B1.Q5_1.gguf Q5_1 0.77GB
Aira-2-1B1.Q6_K.gguf Q6_K 0.84GB
Aira-2-1B1.Q8_0.gguf Q8_0 1.09GB

Original model description:

license: apache-2.0 datasets: - nicholasKluge/instruct-aira-dataset language: - en metrics: - accuracy library_name: transformers tags: - alignment - instruction tuned - text generation - conversation - assistant pipeline_tag: text-generation widget: - text: "Can you explain what is Machine Learning?<|endofinstruction|>" example_title: Machine Learning - text: "Do you know anything about virtue ethics?<|endofinstruction|>" example_title: Ethics - text: "How can I make my girlfriend happy?<|endofinstruction|>" example_title: Advise inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 30 top_p: 0.3 max_new_tokens: 200 length_penalty: 0.3 early_stopping: true co2_eq_emissions: emissions: 1710 source: CodeCarbon training_type: fine-tuning geographical_location: Singapore hardware_used: NVIDIA A100-SXM4-40GB

Aira-2-1B1

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-1B1 is an instruction-tuned model based on TinyLlama-1.1B. The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in Spaces.

Details

  • Size: 1,261,545,472 parameters
  • Dataset: Instruct-Aira Dataset
  • Language: English
  • Number of Epochs: 3
  • Batch size: 4
  • Optimizer: torch.optim.AdamW (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
  • GPU: 1 NVIDIA A100-SXM4-40GB
  • Emissions: 1.71 KgCO2 (Singapore)
  • Total Energy Consumption: 3.51 kWh

This repository has the source code used to train this model.

Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

<|startofinstruction|>What is a language model?<|endofinstruction|>A language model is a probability distribution over a vocabulary.<|endofcompletion|>

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-1B1')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-1B1')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
  add_special_tokens=False,
  return_tensors="pt").to(device)

responses = aira.generate(**inputs,	num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
    print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')

The model will output something like:

>>>Question: 👤 What is the capital of Brazil?

>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.

Limitations

  • Hallucinations: This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.

  • Biases and Toxicity: This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.

  • Repetition and Verbosity: The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.

Evaluation

Model Average ARC TruthfulQA ToxiGen
Aira-2-1B1 42.55 25.26 50.81 51.59
TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T 37.52 30.89 39.55 42.13

Cite as 🤗

@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://github.com/Nkluge-correa/Aira},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
}

@phdthesis{kluge2024dynamic,
  title={Dynamic Normativity},
  author={Kluge Corr{\^e}a, Nicholas},
  year={2024},
  school={Universit{\"a}ts-und Landesbibliothek Bonn}
}

License

Aira-2-1B1 is licensed under the Apache License, Version 2.0. See the LICENSE file for more details.

Downloads last month
10
GGUF
Model size
1.1B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .