Meta-Llama-3.1-8B-LoRA-test

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.1011 0.5297 500 2.0794
2.0793 1.0595 1000 2.0575
2.0905 1.5892 1500 2.0535
1.9968 2.1189 2000 2.0525
2.0262 2.6487 2500 2.0524

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for RikiyaT/Meta-Llama-3.1-8B-LoRA-test

Adapter
(138)
this model