|
--- |
|
license: mit |
|
datasets: |
|
- competitions/aiornot |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
tags: |
|
- classification |
|
- computer vision |
|
--- |
|
|
|
## Usage: |
|
Follow the following code example to use this model. |
|
```python |
|
# import libraries |
|
from transformers import AutoModel, AutoModelForImageClassification |
|
import torch |
|
from datasets import load_dataset |
|
|
|
# load dataset |
|
dataset = load_dataset("competitions/aiornot") |
|
|
|
# list of images |
|
images = dataset["test"][10:20]["image"] |
|
|
|
# load models |
|
feature_extractor = AutoModel.from_pretrained( |
|
"RishiDarkDevil/ai-image-det-resnet152", trust_remote_code=True).to('cuda') |
|
classifier = AutoModelForImageClassification.from_pretrained( |
|
"RishiDarkDevil/ai-image-det-resnet152", trust_remote_code=True).to('cuda') |
|
|
|
# extract features from images |
|
inputs = feature_extractor(images) |
|
|
|
# classification using extracted features |
|
with torch.no_grad(): |
|
logits = classifier(inputs)['logits'] |
|
|
|
# model predicts one of the 2 classes |
|
predicted_label = logits.argmax(-1) |
|
|
|
# predictions |
|
print(predicted_label) # 0 is Not AI, 1 is AI |
|
``` |
|
|
|
**Backbone for Feature Extraction: ResNet152** |
|
|
|
### Performance |
|
- Trained MLP Fine-tuning layers for 150 epochs. |
|
- Accuracy: 0.9250 on validation data (~5% of the training data). |