whisper-medium-id / README.md
Rizka's picture
Upload tokenizer
6463e19 verified
metadata
base_model: openai/whisper-medium
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - id
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-medium-id
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: test
          args: 'config: id, split: test'
        metrics:
          - type: wer
            value: 13.605283966696124
            name: Wer

whisper-medium-id

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2226
  • Wer: 13.6053

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2022 1.9305 1000 0.1830 13.1308
0.1089 3.8610 2000 0.1824 13.0192
0.0609 5.7915 3000 0.1949 13.2657
0.0327 7.7220 4000 0.2125 13.4797
0.0257 9.6525 5000 0.2226 13.6053

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1