swinv2-base-patch4-window8-256-dmae-humeda-DAV14
This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8478
- Accuracy: 0.7692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8421 | 4 | 1.6083 | 0.2115 |
No log | 1.8421 | 8 | 1.5519 | 0.3077 |
7.0606 | 2.8421 | 12 | 1.4896 | 0.3846 |
7.0606 | 3.8421 | 16 | 1.4160 | 0.3846 |
6.3113 | 4.8421 | 20 | 1.3599 | 0.3269 |
6.3113 | 5.8421 | 24 | 1.2338 | 0.3462 |
6.3113 | 6.8421 | 28 | 1.1538 | 0.4808 |
5.1603 | 7.8421 | 32 | 1.0931 | 0.5577 |
5.1603 | 8.8421 | 36 | 1.0510 | 0.5577 |
3.5688 | 9.8421 | 40 | 0.9583 | 0.5577 |
3.5688 | 10.8421 | 44 | 0.9648 | 0.5577 |
3.5688 | 11.8421 | 48 | 0.9486 | 0.6154 |
2.9736 | 12.8421 | 52 | 0.9201 | 0.5962 |
2.9736 | 13.8421 | 56 | 1.0203 | 0.5577 |
2.5257 | 14.8421 | 60 | 0.8558 | 0.6154 |
2.5257 | 15.8421 | 64 | 0.9309 | 0.5769 |
2.5257 | 16.8421 | 68 | 0.9707 | 0.5769 |
2.3819 | 17.8421 | 72 | 0.8505 | 0.6731 |
2.3819 | 18.8421 | 76 | 0.9245 | 0.6538 |
1.9541 | 19.8421 | 80 | 0.9093 | 0.6731 |
1.9541 | 20.8421 | 84 | 0.8463 | 0.7115 |
1.9541 | 21.8421 | 88 | 0.9135 | 0.6731 |
1.7643 | 22.8421 | 92 | 0.8720 | 0.7115 |
1.7643 | 23.8421 | 96 | 0.8631 | 0.7115 |
1.5146 | 24.8421 | 100 | 0.8862 | 0.6923 |
1.5146 | 25.8421 | 104 | 0.8584 | 0.75 |
1.5146 | 26.8421 | 108 | 0.9111 | 0.6923 |
1.4609 | 27.8421 | 112 | 0.8703 | 0.75 |
1.4609 | 28.8421 | 116 | 0.8478 | 0.7692 |
1.463 | 29.8421 | 120 | 0.8645 | 0.75 |
1.463 | 30.8421 | 124 | 0.9137 | 0.6731 |
1.463 | 31.8421 | 128 | 0.9311 | 0.6731 |
1.3699 | 32.8421 | 132 | 0.9070 | 0.7115 |
1.3699 | 33.8421 | 136 | 0.8930 | 0.7115 |
1.2756 | 34.8421 | 140 | 0.8930 | 0.7115 |
1.2756 | 35.8421 | 144 | 0.8935 | 0.7308 |
1.2756 | 36.8421 | 148 | 0.8960 | 0.7308 |
1.273 | 37.8421 | 152 | 0.8951 | 0.7308 |
1.273 | 38.8421 | 156 | 0.8955 | 0.7308 |
1.2626 | 39.8421 | 160 | 0.8954 | 0.7308 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for RobertoSonic/swinv2-base-patch4-window8-256-dmae-humeda-DAV14
Base model
microsoft/swinv2-base-patch4-window8-256