Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 025a531564778051_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/025a531564778051_train_data.json
  type:
    field_input: article
    field_instruction: title
    field_output: summary
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 5
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/4850948a-242d-4247-ae08-bb9e94455433
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 2073
micro_batch_size: 4
mlflow_experiment_name: /tmp/025a531564778051_train_data.json
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a4d4ccf6-0bb8-4170-ae19-2a650c5d1201
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a4d4ccf6-0bb8-4170-ae19-2a650c5d1201
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

4850948a-242d-4247-ae08-bb9e94455433

This model is a fine-tuned version of peft-internal-testing/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.9140

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 588

Training results

Training Loss Epoch Step Validation Loss
11.9313 0.0017 1 11.9307
11.9273 0.0851 50 11.9263
11.9212 0.1702 100 11.9201
11.9177 0.2553 150 11.9176
11.9175 0.3405 200 11.9163
11.9175 0.4256 250 11.9154
11.9151 0.5107 300 11.9148
11.9146 0.5958 350 11.9145
11.915 0.6809 400 11.9142
11.9131 0.7660 450 11.9141
11.9143 0.8512 500 11.9140
11.9143 0.9363 550 11.9140

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Romain-XV/4850948a-242d-4247-ae08-bb9e94455433

Adapter
(277)
this model