RonTon05's picture
End of training
4966337 verified
metadata
library_name: transformers
license: agpl-3.0
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: PhishLang_PhoBERTCNN_15k
    results: []

PhishLang_PhoBERTCNN_15k

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3386
  • Accuracy: 0.923
  • F1: 0.9068
  • Precision: 0.9180
  • Recall: 0.8974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6996 0.5333 100 0.4548 0.8867 0.8615 0.8761 0.8503
0.6996 1.064 200 0.3524 0.9187 0.8998 0.9207 0.8844
0.6996 1.5973 300 0.3441 0.9217 0.9039 0.9223 0.8900
0.4376 2.128 400 0.3457 0.9247 0.9070 0.9296 0.8906
0.4376 2.6613 500 0.3423 0.928 0.9106 0.9366 0.8924
0.4376 3.192 600 0.3370 0.9253 0.9089 0.9245 0.8966
0.4376 3.7253 700 0.3378 0.9227 0.9074 0.9132 0.9021
0.3287 4.256 800 0.3392 0.921 0.9051 0.9126 0.8985
0.3287 4.7893 900 0.3374 0.9237 0.9078 0.9180 0.8992
0.3287 5.32 1000 0.3377 0.9223 0.9067 0.9142 0.9000
0.3287 5.8533 1100 0.3386 0.9273 0.9118 0.9248 0.9012
0.3037 6.384 1200 0.3454 0.919 0.9037 0.9064 0.9011
0.3037 6.9173 1300 0.3367 0.9233 0.9070 0.9192 0.8971
0.3037 7.448 1400 0.3373 0.9237 0.9073 0.9200 0.8970
0.291 7.9813 1500 0.3373 0.9223 0.9055 0.9196 0.8942
0.291 8.512 1600 0.3394 0.9233 0.9071 0.9189 0.8974
0.291 9.0427 1700 0.3379 0.9237 0.9075 0.9194 0.8976
0.291 9.576 1800 0.3386 0.923 0.9068 0.9180 0.8974

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0