Keypoint Detection
movenet / README.md
FBAGSTM's picture
Update README.md
60b6753 verified
---
license: other
license_name: sla0044
license_link: >-
https://github.com/STMicroelectronics/stm32aimodelzoo/pose_estimation/LICENSE.md
pipeline_tag: keypoint-detection
---
# MoveNet quantized
## **Use case** : `Pose estimation`
# Model description
MoveNet is a single pose estimation model targeted for real-time processing implemented in Tensorflow.
The model is quantized in int8 format using tensorflow lite converter.
## Network information
| Network information | Value |
|-------------------------|-----------------|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Provenance | https://www.kaggle.com/models/google/movenet
| Paper | https://storage.googleapis.com/movenet/MoveNet.SinglePose%20Model%20Card.pdf |
## Networks inputs / outputs
With an image resolution of NxM with K keypoints to detect :
- For heatmaps models
| Input Shape | Description |
| ----- | ----------- |
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, W, H, K) | FLOAT values Where WXH is the resolution of the output heatmaps and K is the number of keypoints|
- For the other models
| Input Shape | Description |
| ----- | ----------- |
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, Kx3) | FLOAT values Where Kx3 are the (x,y,conf) values of each keypoints |
## Recommended Platforms
| Platform | Supported | Recommended |
|----------|-----------|-------------|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [] | [] |
| STM32MP1 | [x] | [] |
| STM32MP2 | [x] | [x] |
| STM32N6 | [x] | [x] |
# Performances
## Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [ST MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/ST_pretrainedmodel_public_dataset/custom_dataset_person_13kpts/st_movenet_lightning_heatmaps_192/st_movenet_lightning_heatmaps_192_int8_pc.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 1674 | 0.0 | 3036.17 | 10.0.0 | 2.0.0 |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_192/movenet_lightning_heatmaps_192_int8_pc.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6 | 1674 | 0.0 | 3036.41 | 10.0.0 | 2.0.0 |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_224/movenet_lightning_heatmaps_224_int8_pc.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 2058 | 0.0 | 3088.56 | 10.0.0 | 2.0.0 |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_256/movenet_lightning_heatmaps_256_int8_pc.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 2360 | 0.0 | 3141.36 | 10.0.0 | 2.0.0 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
| [ST MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/ST_pretrainedmodel_public_dataset/custom_dataset_person_13kpts/st_movenet_lightning_heatmaps_192/st_movenet_lightning_heatmaps_192_int8_pc.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 18.44 | 54.23 | 10.0.0 | 2.0.0 |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_192/movenet_lightning_heatmaps_192_int8_pc.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 18.49 | 54.08 | 10.0.0 | 2.0.0 |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_224/movenet_lightning_heatmaps_224_int8_pc.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 22.33 | 44.78 | 10.0.0 | 2.0.0 |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_256/movenet_lightning_heatmaps_256_int8_pc.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 27.01 | 37.03 | 10.0.0 | 2.0.0 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
| [ST MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/ST_pretrainedmodel_public_dataset/custom_dataset_person_13kpts/st_movenet_lightning_heatmaps_192/st_movenet_lightning_heatmaps_192_int8_pc.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 58.02 ms | 3.75 | 96.25 |0 | v5.0.0 | OpenVX |
| [ST MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/ST_pretrainedmodel_public_dataset/custom_dataset_person_13kpts/st_movenet_lightning_heatmaps_192/st_movenet_lightning_heatmaps_192_int8_pt.tflite) | Int8 | 192x192x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 7.93 ms | 84.89 | 15.11 |0 | v5.0.0 | OpenVX |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_192/movenet_lightning_heatmaps_192_int8_pc.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 58.17 ms | 3.80 | 96.20 |0 | v5.0.0 | OpenVX |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_192/movenet_lightning_heatmaps_192_int8_pt.tflite) | Int8 | 192x192x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 8.00 ms | 86.48 | 13.52 |0 | v5.0.0 | OpenVX |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_224/movenet_lightning_heatmaps_224_int8_pc.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 81.65 ms | 2.77 | 97.23 |0 | v5.0.0 | OpenVX |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_224/movenet_lightning_heatmaps_224_int8_pt.tflite) | Int8 | 224x224x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 11.55 ms | 87.04 | 12.96 |0 | v5.0.0 | OpenVX |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_256/movenet_lightning_heatmaps_256_int8_pc.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 70.57 ms | 3.74 | 96.26 |0 | v5.0.0 | OpenVX |
| [MoveNet Lightning heatmaps](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_256/movenet_lightning_heatmaps_256_int8_pc.tflite) | Int8 | 256x256x3 | per-tensor | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 12.90 ms | 86.33 | 13.67 |0 | v5.0.0 | OpenVX |
| [MoveNet Lightning](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_192/movenet_singlepose_lightning_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 66.97 ms | 6.72 | 93.28 |0 | v5.0.0 | OpenVX
| [MoveNet Thunder](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_thunder_256/movenet_singlepose_thunder_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 187.1 ms | 3.96 | 96.04 |0 | v5.0.0 | OpenVX |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
### OKS on COCO Person dataset
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | OKS |
|-------|--------|------------|----------------|
| [ST MoveNet Lightning heatmaps per-channel](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/ST_pretrainedmodel_public_dataset/custom_dataset_person_13kpts/st_movenet_lightning_heatmaps_192/st_movenet_lightning_heatmaps_192_int8_pc.tflite) | Int8 | 192x192x3 | *52.1 % |
| [ST MoveNet Lightning heatmaps per-tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/ST_pretrainedmodel_public_dataset/custom_dataset_person_13kpts/st_movenet_lightning_heatmaps_192/st_movenet_lightning_heatmaps_192_int8_pt.tflite) | Int8 | 192x192x3 | *39.31 % |
| [MoveNet Lightning heatmaps per-channel](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_192/movenet_lightning_heatmaps_192_int8_pc.tflite) | Int8 | 192x192x3 | 54.01 % |
| [MoveNet Lightning heatmaps per-tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_192/movenet_lightning_heatmaps_192_int8_pt.tflite) | Int8 | 192x192x3 | 48.49 % |
| [MoveNet Lightning heatmaps per-channel](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_224/movenet_lightning_heatmaps_224_int8_pc.tflite) | Int8 | 224x224x3 | 57.07 % |
| [MoveNet Lightning heatmaps per-tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_224/movenet_lightning_heatmaps_224_int8_pt.tflite) | Int8 | 224x224x3 | 50.93 % |
| [MoveNet Lightning heatmaps per-channel](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_256/movenet_lightning_heatmaps_256_int8_pc.tflite) | Int8 | 256x256x3 | 58.58 % |
| [MoveNet Lightning heatmaps per-tensor](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_heatmaps_256/movenet_lightning_heatmaps_256_int8_pt.tflite) | Int8 | 256x256x3 | 52.86 % |
| [MoveNet Lightning](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_lightning_192/movenet_singlepose_lightning_192_int8.tflite) | Int8 | 192x192x3 | 54.12% |
| [MoveNet Thunder](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/pose_estimation/movenet/Public_pretrainedmodel_custom_dataset/custom_dataset_person_17kpts/movenet_thunder_256/movenet_singlepose_thunder_256_int8.tflite) | Int8 | 256x256x3 | 64.43% |
\* keypoints = 13
## Integration in a simple example and other services support:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
<a id="1">[1]</a>
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}