Sakalti/ultiima-32B-Q3-mlx
The Model Sakalti/ultiima-32B-Q3-mlx was converted to MLX format from Sakalti/ultiima-32B using mlx-lm version 0.20.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("Sakalti/ultiima-32B-Q3-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 31
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Sakalti/ultiima-32B-Q3-mlx
Base model
Sakalti/ultiima-32BEvaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard68.540
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard58.110
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard43.130
- acc_norm on GPQA (0-shot)Open LLM Leaderboard17.450
- acc_norm on MuSR (0-shot)Open LLM Leaderboard24.130
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard54.560