SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("SamagraDataGov/embedding_finetuned")
# Run inference
sentences = [
    'What should be done before sowing pigeonpea in fields where it is being sown for the first time after a long time?',
    "'y Firstly, Treat 1kg seeds with a mixture of 2 grams of thiram and one gram of carbendazim or 4 grams of Trichoderma + 1 gram of carboxyne or carbendazim. Before planting, treat each seed with a unique Rhizobium culture of pigeon pea. A packet of this culture has to be sprinkled over 10 kg of seeds, then mix it lightly with hands, so that a light layer is formed on the seeds. Sow this seed immediately. There is a possibility of the death of culture organisms from strong sunlight. In fields where pigeonpea is being sown for the first time after a long time, it must use culture.'",
    "'Organic farming is one of the several approaches found to meet the objectives of sustainable agriculture. Organic farming is often associated directly with, \\'Sustainable farming.\\' However, ‘organic farming’ and ‘sustainable farming’, policy and ethics-wise are t wo different terms. Many techniques used in organic farming like inter-cropping, mulching and integration of crops and livestock are not alien to various agriculture systems including the traditional agriculture practiced in old countries like India. However, organic farming is based on various laws and certification programmes, which prohibit the use of almost all synthetic inputs, and health of the soil is recognized as the central theme of the method. Organic products are grown under a system of agriculture without the use of chemical fertilizers and pesticides with an environmentally and socially responsible approach. This is a method of farming that works at'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.468
cosine_accuracy@5 0.9092
cosine_accuracy@10 0.9604
cosine_precision@1 0.468
cosine_precision@5 0.1818
cosine_precision@10 0.096
cosine_recall@1 0.468
cosine_recall@5 0.9092
cosine_recall@10 0.9604
cosine_ndcg@5 0.7079
cosine_ndcg@10 0.7245
cosine_ndcg@100 0.7327
cosine_mrr@5 0.6405
cosine_mrr@10 0.6473
cosine_mrr@100 0.6492
cosine_map@100 0.6492
dot_accuracy@1 0.4668
dot_accuracy@5 0.9092
dot_accuracy@10 0.9604
dot_precision@1 0.4668
dot_precision@5 0.1818
dot_precision@10 0.096
dot_recall@1 0.4668
dot_recall@5 0.9092
dot_recall@10 0.9604
dot_ndcg@5 0.7075
dot_ndcg@10 0.7241
dot_ndcg@100 0.7322
dot_mrr@5 0.6398
dot_mrr@10 0.6467
dot_mrr@100 0.6486
dot_map@100 0.6486

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • gradient_accumulation_steps: 4
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • num_train_epochs: 1.0
  • warmup_ratio: 0.1
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss val_evaluator_dot_map@100
0.0682 15 0.6463 0.3498 0.6152
0.1364 30 0.3071 0.1975 0.6212
0.2045 45 0.2023 0.1576 0.6248
0.2727 60 0.1457 0.1357 0.6321
0.3409 75 0.2456 0.1228 0.6370
0.4091 90 0.1407 0.1130 0.6365
0.4773 105 0.1727 0.1042 0.6393
0.5455 120 0.1311 0.0975 0.6428
0.6136 135 0.13 0.0910 0.6433
0.6818 150 0.0919 0.0872 0.6466
0.75 165 0.1587 0.0851 0.6490
0.8182 180 0.1098 0.0834 0.6481
0.8864 195 0.1013 0.0824 0.6461
0.9545 210 0.1144 0.082 0.6486
1.0 220 - 0.0820 0.6486
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.43.4
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, 
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Downloads last month
4
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SamagraDataGov/embedding_finetuned

Finetuned
(141)
this model

Evaluation results