SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SamagraDataGov/embedding_finetuned")
# Run inference
sentences = [
'What should be done before sowing pigeonpea in fields where it is being sown for the first time after a long time?',
"'y Firstly, Treat 1kg seeds with a mixture of 2 grams of thiram and one gram of carbendazim or 4 grams of Trichoderma + 1 gram of carboxyne or carbendazim. Before planting, treat each seed with a unique Rhizobium culture of pigeon pea. A packet of this culture has to be sprinkled over 10 kg of seeds, then mix it lightly with hands, so that a light layer is formed on the seeds. Sow this seed immediately. There is a possibility of the death of culture organisms from strong sunlight. In fields where pigeonpea is being sown for the first time after a long time, it must use culture.'",
"'Organic farming is one of the several approaches found to meet the objectives of sustainable agriculture. Organic farming is often associated directly with, \\'Sustainable farming.\\' However, ‘organic farming’ and ‘sustainable farming’, policy and ethics-wise are t wo different terms. Many techniques used in organic farming like inter-cropping, mulching and integration of crops and livestock are not alien to various agriculture systems including the traditional agriculture practiced in old countries like India. However, organic farming is based on various laws and certification programmes, which prohibit the use of almost all synthetic inputs, and health of the soil is recognized as the central theme of the method. Organic products are grown under a system of agriculture without the use of chemical fertilizers and pesticides with an environmentally and socially responsible approach. This is a method of farming that works at'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
val_evaluator
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.468 |
cosine_accuracy@5 | 0.9092 |
cosine_accuracy@10 | 0.9604 |
cosine_precision@1 | 0.468 |
cosine_precision@5 | 0.1818 |
cosine_precision@10 | 0.096 |
cosine_recall@1 | 0.468 |
cosine_recall@5 | 0.9092 |
cosine_recall@10 | 0.9604 |
cosine_ndcg@5 | 0.7079 |
cosine_ndcg@10 | 0.7245 |
cosine_ndcg@100 | 0.7327 |
cosine_mrr@5 | 0.6405 |
cosine_mrr@10 | 0.6473 |
cosine_mrr@100 | 0.6492 |
cosine_map@100 | 0.6492 |
dot_accuracy@1 | 0.4668 |
dot_accuracy@5 | 0.9092 |
dot_accuracy@10 | 0.9604 |
dot_precision@1 | 0.4668 |
dot_precision@5 | 0.1818 |
dot_precision@10 | 0.096 |
dot_recall@1 | 0.4668 |
dot_recall@5 | 0.9092 |
dot_recall@10 | 0.9604 |
dot_ndcg@5 | 0.7075 |
dot_ndcg@10 | 0.7241 |
dot_ndcg@100 | 0.7322 |
dot_mrr@5 | 0.6398 |
dot_mrr@10 | 0.6467 |
dot_mrr@100 | 0.6486 |
dot_map@100 | 0.6486 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsgradient_accumulation_steps
: 4learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 1.0warmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | val_evaluator_dot_map@100 |
---|---|---|---|---|
0.0682 | 15 | 0.6463 | 0.3498 | 0.6152 |
0.1364 | 30 | 0.3071 | 0.1975 | 0.6212 |
0.2045 | 45 | 0.2023 | 0.1576 | 0.6248 |
0.2727 | 60 | 0.1457 | 0.1357 | 0.6321 |
0.3409 | 75 | 0.2456 | 0.1228 | 0.6370 |
0.4091 | 90 | 0.1407 | 0.1130 | 0.6365 |
0.4773 | 105 | 0.1727 | 0.1042 | 0.6393 |
0.5455 | 120 | 0.1311 | 0.0975 | 0.6428 |
0.6136 | 135 | 0.13 | 0.0910 | 0.6433 |
0.6818 | 150 | 0.0919 | 0.0872 | 0.6466 |
0.75 | 165 | 0.1587 | 0.0851 | 0.6490 |
0.8182 | 180 | 0.1098 | 0.0834 | 0.6481 |
0.8864 | 195 | 0.1013 | 0.0824 | 0.6461 |
0.9545 | 210 | 0.1144 | 0.082 | 0.6486 |
1.0 | 220 | - | 0.0820 | 0.6486 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.43.4
- PyTorch: 2.4.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for SamagraDataGov/embedding_finetuned
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on val evaluatorself-reported0.468
- Cosine Accuracy@5 on val evaluatorself-reported0.909
- Cosine Accuracy@10 on val evaluatorself-reported0.960
- Cosine Precision@1 on val evaluatorself-reported0.468
- Cosine Precision@5 on val evaluatorself-reported0.182
- Cosine Precision@10 on val evaluatorself-reported0.096
- Cosine Recall@1 on val evaluatorself-reported0.468
- Cosine Recall@5 on val evaluatorself-reported0.909
- Cosine Recall@10 on val evaluatorself-reported0.960
- Cosine Ndcg@5 on val evaluatorself-reported0.708