Sambosis/bert-base-cased-finetuned-swag

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.4828
  • Train Accuracy: 0.8181
  • Validation Loss: 0.6618
  • Validation Accuracy: 0.7539
  • Epoch: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 22980, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.8870 0.6429 0.6619 0.7401 0
0.4828 0.8181 0.6618 0.7539 1

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.12.0
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
4
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for Sambosis/bert-base-cased-finetuned-swag

Finetuned
(2030)
this model