Official implementation of fine-tuned ViT-L/16 ProLIP on DataComp 1B

  • This weight is a fine-tuned version of ViT-L/16 by Probabilistic Language-Image Pre-Training (ProLIP)
  • Pre-trained weight
  • Fine-tuning dataset
    • DataComp 1B / Seen samples 1.28B
  • Architectural difference
    • The original uses 256x256 resolution, while ProLIP uses 224x224
    • ProLIP uses [CLS] token for pooling, while the original SIGLIP model uses attention pooling.
    • ProLIP text encoder uses the [CLS] token, while the original model does not.

Overview

Performance overview

  • Zero-shot ImageNet-1k top-1 accuracy: 79.4%
  • Zero-shot ImageNet distribution shifts: 68.6%
  • Zero-shot VTAB performance: 64.0%
  • Zero-shot retrieval performance: 61.3%
  • Average zero-shot performance on 38 tasks: 65.9%
import requests
from PIL import Image

import torch
from prolip.model import ProLIPHF
from transformers import CLIPProcessor
from prolip.tokenizer import HFTokenizer

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
model = ProLIPHF.from_pretrained("SanghyukChun/ProLIP-ViT-L-16-FT-DC-1B-1_28M")
tokenizer = HFTokenizer("timm/ViT-B-16-SigLIP", context_length=64, clean="canonicalize")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt", padding=True)
texts = ["A couple of cats laying on top of a pink blanket.", "A man walks through a flooded road during a rainstorm", "photo"]
texts = tokenizer(texts)

outputs = model(image=inputs["pixel_values"], text=texts)

l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T
i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1)
t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1)
csd_logit = l2_logit - 0.5 * t_unc
csd_logit2 = l2_logit.T - 0.5 * i_unc
print("Mean-only image-to-text logits (by L2 distance):", l2_logit)
print("Uncertainty-aware image-to-text logits (by CSD):", csd_logit)
print("Uncertainty-aware text-to-image logits (by CSD):", csd_logit2.T)
print("Image uncertainty: ", i_unc)
print("Text uncertainty: ", t_unc)
@article{chun2024prolip,
  title={Probabilistic Language-Image Pre-Training},
  author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo},
  journal={arXiv preprint arXiv:2410.18857},
  year={2024}
}
Downloads last month
12
Safetensors
Model size
643M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for SanghyukChun/ProLIP-ViT-L-16-FT-DC-1B-1_28B

Finetuned
(1)
this model

Dataset used to train SanghyukChun/ProLIP-ViT-L-16-FT-DC-1B-1_28B

Collection including SanghyukChun/ProLIP-ViT-L-16-FT-DC-1B-1_28B