lmv2-g-invoice-993-doc-08-02

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3517
  • Due Date Precision: 0.9277
  • Due Date Recall: 0.875
  • Due Date F1: 0.9006
  • Due Date Number: 88
  • Invoice Date Precision: 0.8182
  • Invoice Date Recall: 0.9172
  • Invoice Date F1: 0.8649
  • Invoice Date Number: 157
  • Invoice Id Precision: 0.8993
  • Invoice Id Recall: 0.8741
  • Invoice Id F1: 0.8865
  • Invoice Id Number: 143
  • Payment Terms Precision: 0.5469
  • Payment Terms Recall: 0.7143
  • Payment Terms F1: 0.6195
  • Payment Terms Number: 49
  • Receiver Address Precision: 0.7249
  • Receiver Address Recall: 0.7697
  • Receiver Address F1: 0.7466
  • Receiver Address Number: 178
  • Receiver Name Precision: 0.8270
  • Receiver Name Recall: 0.8596
  • Receiver Name F1: 0.8430
  • Receiver Name Number: 178
  • Sub Total Precision: 0.8624
  • Sub Total Recall: 0.8704
  • Sub Total F1: 0.8664
  • Sub Total Number: 108
  • Supplier Address Precision: 0.7665
  • Supplier Address Recall: 0.7711
  • Supplier Address F1: 0.7688
  • Supplier Address Number: 166
  • Supplier Name Precision: 0.7567
  • Supplier Name Recall: 0.8057
  • Supplier Name F1: 0.7804
  • Supplier Name Number: 247
  • Tax Amount Precision: 0.8333
  • Tax Amount Recall: 0.8209
  • Tax Amount F1: 0.8271
  • Tax Amount Number: 67
  • Total Precision: 0.8061
  • Total Recall: 0.7557
  • Total F1: 0.7801
  • Total Number: 176
  • Overall Precision: 0.7970
  • Overall Recall: 0.8221
  • Overall F1: 0.8094
  • Overall Accuracy: 0.9572

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Due Date Precision Due Date Recall Due Date F1 Due Date Number Invoice Date Precision Invoice Date Recall Invoice Date F1 Invoice Date Number Invoice Id Precision Invoice Id Recall Invoice Id F1 Invoice Id Number Payment Terms Precision Payment Terms Recall Payment Terms F1 Payment Terms Number Receiver Address Precision Receiver Address Recall Receiver Address F1 Receiver Address Number Receiver Name Precision Receiver Name Recall Receiver Name F1 Receiver Name Number Sub Total Precision Sub Total Recall Sub Total F1 Sub Total Number Supplier Address Precision Supplier Address Recall Supplier Address F1 Supplier Address Number Supplier Name Precision Supplier Name Recall Supplier Name F1 Supplier Name Number Tax Amount Precision Tax Amount Recall Tax Amount F1 Tax Amount Number Total Precision Total Recall Total F1 Total Number Overall Precision Overall Recall Overall F1 Overall Accuracy
1.2159 1.0 794 0.5347 0.0 0.0 0.0 88 0.4828 0.8025 0.6029 157 0.5247 0.5944 0.5574 143 0.0 0.0 0.0 49 0.3738 0.4326 0.4010 178 0.3780 0.2697 0.3148 178 0.0 0.0 0.0 108 0.4375 0.5060 0.4693 166 0.4348 0.3239 0.3712 247 0.0 0.0 0.0 67 0.5278 0.1080 0.1792 176 0.4443 0.3333 0.3809 0.9071
0.4121 2.0 1588 0.3147 0.0 0.0 0.0 88 0.5353 0.9172 0.6761 157 0.7355 0.6224 0.6742 143 0.2245 0.4490 0.2993 49 0.5707 0.6573 0.6110 178 0.7457 0.7247 0.7350 178 0.7377 0.4167 0.5325 108 0.5802 0.7410 0.6508 166 0.6703 0.7490 0.7075 247 0.0 0.0 0.0 67 0.4639 0.8409 0.5980 176 0.5779 0.6435 0.6089 0.9340
0.2248 3.0 2382 0.2087 0.8519 0.7841 0.8166 88 0.7849 0.9299 0.8513 157 0.8182 0.8182 0.8182 143 0.5179 0.5918 0.5524 49 0.5799 0.7135 0.6398 178 0.8192 0.8146 0.8169 178 0.8022 0.6759 0.7337 108 0.5990 0.7470 0.6649 166 0.6522 0.7895 0.7143 247 0.8103 0.7015 0.752 67 0.7444 0.7614 0.7528 176 0.7107 0.7746 0.7412 0.9532
0.1303 4.0 3176 0.2286 0.8280 0.875 0.8508 88 0.8671 0.8726 0.8698 157 0.8 0.8392 0.8191 143 0.3976 0.6735 0.5 49 0.6474 0.6910 0.6685 178 0.8054 0.8371 0.8209 178 0.75 0.75 0.75 108 0.6467 0.6506 0.6486 166 0.7143 0.7895 0.7500 247 0.8333 0.7463 0.7874 67 0.7344 0.8011 0.7663 176 0.7318 0.7797 0.7550 0.9500
0.0814 5.0 3970 0.2354 0.8444 0.8636 0.8539 88 0.8780 0.9172 0.8972 157 0.8212 0.8671 0.8435 143 0.3908 0.6939 0.5 49 0.7174 0.7416 0.7293 178 0.8418 0.8371 0.8394 178 0.6935 0.7963 0.7414 108 0.7377 0.8133 0.7736 166 0.7118 0.8300 0.7664 247 0.6579 0.7463 0.6993 67 0.7553 0.8068 0.7802 176 0.7459 0.8202 0.7813 0.9545
0.0604 6.0 4764 0.2217 0.8333 0.9091 0.8696 88 0.875 0.8917 0.8833 157 0.8414 0.8531 0.8472 143 0.4848 0.6531 0.5565 49 0.6716 0.7697 0.7173 178 0.8098 0.8371 0.8232 178 0.8173 0.7870 0.8019 108 0.7098 0.8253 0.7632 166 0.7148 0.7611 0.7373 247 0.6786 0.8507 0.7550 67 0.7514 0.7898 0.7701 176 0.7518 0.8131 0.7812 0.9541
0.0478 7.0 5558 0.2268 0.8387 0.8864 0.8619 88 0.8286 0.9236 0.8735 157 0.8129 0.8811 0.8456 143 0.4384 0.6531 0.5246 49 0.6579 0.7022 0.6793 178 0.8258 0.8258 0.8258 178 0.8302 0.8148 0.8224 108 0.5957 0.6747 0.6328 166 0.6926 0.7206 0.7063 247 0.8529 0.8657 0.8593 67 0.8117 0.7102 0.7576 176 0.7416 0.7797 0.7602 0.9550
0.0361 8.0 6352 0.2785 0.6949 0.9318 0.7961 88 0.8305 0.9363 0.8802 157 0.8089 0.8881 0.8467 143 0.5441 0.7551 0.6325 49 0.6919 0.7697 0.7287 178 0.8315 0.8315 0.8315 178 0.7561 0.8611 0.8052 108 0.7253 0.7952 0.7586 166 0.6754 0.8340 0.7464 247 0.7887 0.8358 0.8116 67 0.7917 0.7557 0.7733 176 0.7438 0.8337 0.7862 0.9520
0.0283 9.0 7146 0.2838 0.8404 0.8977 0.8681 88 0.8412 0.9108 0.8746 157 0.8667 0.8182 0.8417 143 0.6066 0.7551 0.6727 49 0.7213 0.7416 0.7313 178 0.8644 0.8596 0.8620 178 0.8511 0.7407 0.7921 108 0.7135 0.7952 0.7521 166 0.7530 0.7530 0.7530 247 0.6522 0.8955 0.7547 67 0.8034 0.5341 0.6416 176 0.7801 0.7791 0.7796 0.9553
0.0253 10.0 7940 0.3362 0.7217 0.9432 0.8177 88 0.8882 0.9108 0.8994 157 0.8403 0.8462 0.8432 143 0.3980 0.7959 0.5306 49 0.6703 0.6966 0.6832 178 0.8042 0.8539 0.8283 178 0.8462 0.8148 0.8302 108 0.6667 0.8193 0.7351 166 0.7173 0.8219 0.7660 247 0.8060 0.8060 0.8060 67 0.7460 0.8011 0.7726 176 0.7384 0.8247 0.7791 0.9385
0.0201 11.0 8734 0.3310 0.8247 0.9091 0.8649 88 0.8820 0.9045 0.8931 157 0.8832 0.8462 0.8643 143 0.5072 0.7143 0.5932 49 0.7294 0.6966 0.7126 178 0.8314 0.8034 0.8171 178 0.8165 0.8241 0.8203 108 0.6618 0.8133 0.7297 166 0.7399 0.8178 0.7769 247 0.8281 0.7910 0.8092 67 0.75 0.7330 0.7414 176 0.7697 0.8048 0.7868 0.9529
0.0239 12.0 9528 0.2936 0.8736 0.8636 0.8686 88 0.8614 0.9108 0.8854 157 0.8955 0.8392 0.8664 143 0.5373 0.7347 0.6207 49 0.6818 0.7584 0.7181 178 0.8398 0.8539 0.8468 178 0.83 0.7685 0.7981 108 0.7529 0.7892 0.7706 166 0.7674 0.8016 0.7842 247 0.8966 0.7761 0.8320 67 0.7527 0.7784 0.7654 176 0.7869 0.8112 0.7989 0.9565
0.0229 13.0 10322 0.3042 0.8791 0.9091 0.8939 88 0.8735 0.9236 0.8978 157 0.8662 0.8601 0.8632 143 0.6613 0.8367 0.7387 49 0.7068 0.7584 0.7317 178 0.8324 0.8652 0.8485 178 0.8252 0.7870 0.8057 108 0.7278 0.7892 0.7572 166 0.7751 0.7814 0.7782 247 0.8621 0.7463 0.8000 67 0.7683 0.7159 0.7412 176 0.7938 0.8112 0.8024 0.9580
0.0165 14.0 11116 0.2715 0.9111 0.9318 0.9213 88 0.8802 0.9363 0.9074 157 0.8671 0.8671 0.8671 143 0.5211 0.7551 0.6167 49 0.7053 0.7528 0.7283 178 0.8115 0.8708 0.8401 178 0.9158 0.8056 0.8571 108 0.7196 0.8193 0.7662 166 0.7348 0.7854 0.7593 247 0.7733 0.8657 0.8169 67 0.7943 0.7898 0.7920 176 0.7836 0.8304 0.8064 0.9600
0.0221 15.0 11910 0.2866 0.8161 0.8068 0.8114 88 0.8720 0.9108 0.8910 157 0.8986 0.8671 0.8826 143 0.4722 0.6939 0.5620 49 0.7204 0.7528 0.7363 178 0.8232 0.8371 0.8301 178 0.8571 0.8333 0.8451 108 0.7216 0.7651 0.7427 166 0.7293 0.7854 0.7563 247 0.8868 0.7015 0.7833 67 0.8255 0.6989 0.7569 176 0.7838 0.7938 0.7888 0.9552
0.0173 16.0 12704 0.3234 0.7685 0.9432 0.8469 88 0.8512 0.9108 0.88 157 0.8288 0.8462 0.8374 143 0.4474 0.6939 0.544 49 0.6915 0.7303 0.7104 178 0.8365 0.7472 0.7893 178 0.6596 0.8611 0.7470 108 0.6372 0.8675 0.7347 166 0.6823 0.8259 0.7473 247 0.7333 0.8209 0.7746 67 0.7513 0.8068 0.7781 176 0.7223 0.8234 0.7695 0.9532
0.0159 17.0 13498 0.3301 0.8652 0.875 0.8701 88 0.8480 0.9236 0.8841 157 0.8921 0.8671 0.8794 143 0.5522 0.7551 0.6379 49 0.7027 0.7303 0.7163 178 0.7989 0.8483 0.8229 178 0.7863 0.8519 0.8178 108 0.7711 0.7711 0.7711 166 0.6877 0.7935 0.7368 247 0.8116 0.8358 0.8235 67 0.7976 0.7614 0.7791 176 0.7720 0.8157 0.7933 0.9554
0.0156 18.0 14292 0.3390 0.8261 0.8636 0.8444 88 0.8412 0.9108 0.8746 157 0.8794 0.8671 0.8732 143 0.5968 0.7551 0.6667 49 0.6682 0.7921 0.7249 178 0.7967 0.8146 0.8056 178 0.9195 0.7407 0.8205 108 0.7321 0.7410 0.7365 166 0.7333 0.7571 0.7450 247 0.8197 0.7463 0.7813 67 0.7797 0.7841 0.7819 176 0.7746 0.7990 0.7866 0.9548
0.0125 19.0 15086 0.3517 0.9277 0.875 0.9006 88 0.8182 0.9172 0.8649 157 0.8993 0.8741 0.8865 143 0.5469 0.7143 0.6195 49 0.7249 0.7697 0.7466 178 0.8270 0.8596 0.8430 178 0.8624 0.8704 0.8664 108 0.7665 0.7711 0.7688 166 0.7567 0.8057 0.7804 247 0.8333 0.8209 0.8271 67 0.8061 0.7557 0.7801 176 0.7970 0.8221 0.8094 0.9572
0.0132 20.0 15880 0.3682 0.9241 0.8295 0.8743 88 0.8631 0.9236 0.8923 157 0.9030 0.8462 0.8736 143 0.55 0.6735 0.6055 49 0.6818 0.7584 0.7181 178 0.8488 0.8202 0.8343 178 0.8190 0.7963 0.8075 108 0.7081 0.7892 0.7464 166 0.7764 0.7449 0.7603 247 0.7160 0.8657 0.7838 67 0.8110 0.7557 0.7824 176 0.7865 0.7996 0.7930 0.9543
0.0112 21.0 16674 0.3974 0.8721 0.8523 0.8621 88 0.8249 0.9299 0.8743 157 0.8929 0.8741 0.8834 143 0.5205 0.7755 0.6230 49 0.6569 0.7528 0.7016 178 0.7677 0.8539 0.8085 178 0.8246 0.8704 0.8468 108 0.7326 0.7590 0.7456 166 0.7273 0.7773 0.7515 247 0.7746 0.8209 0.7971 67 0.7852 0.6648 0.72 176 0.7609 0.8054 0.7825 0.9513
0.0157 22.0 17468 0.3658 0.9390 0.875 0.9059 88 0.8412 0.9108 0.8746 157 0.9065 0.8811 0.8936 143 0.5075 0.6939 0.5862 49 0.6837 0.7528 0.7166 178 0.8415 0.8652 0.8532 178 0.875 0.7778 0.8235 108 0.6473 0.8072 0.7185 166 0.7540 0.7692 0.7615 247 0.8621 0.7463 0.8000 67 0.7949 0.7045 0.7470 176 0.7783 0.8028 0.7904 0.9525
0.0104 23.0 18262 0.3755 0.9302 0.9091 0.9195 88 0.8727 0.9172 0.8944 157 0.8477 0.8951 0.8707 143 0.5893 0.6735 0.6286 49 0.5947 0.7584 0.6667 178 0.7023 0.8483 0.7684 178 0.7787 0.8796 0.8261 108 0.7321 0.7410 0.7365 166 0.75 0.7409 0.7454 247 0.7714 0.8060 0.7883 67 0.8057 0.8011 0.8034 176 0.7546 0.8137 0.7831 0.9502
0.018 24.0 19056 0.3719 0.8571 0.8182 0.8372 88 0.8683 0.9236 0.8951 157 0.8690 0.8811 0.8750 143 0.5781 0.7551 0.6549 49 0.6604 0.7865 0.7179 178 0.7937 0.8427 0.8174 178 0.9310 0.75 0.8308 108 0.7363 0.8072 0.7701 166 0.7412 0.7652 0.7530 247 0.8596 0.7313 0.7903 67 0.7765 0.75 0.7630 176 0.7785 0.8060 0.7920 0.9553
0.0088 25.0 19850 0.3638 0.8876 0.8977 0.8927 88 0.8902 0.9299 0.9097 157 0.8301 0.8881 0.8581 143 0.6032 0.7755 0.6786 49 0.6853 0.7584 0.72 178 0.8683 0.8146 0.8406 178 0.9111 0.7593 0.8283 108 0.6952 0.7831 0.7365 166 0.74 0.7490 0.7445 247 0.7945 0.8657 0.8286 67 0.8068 0.8068 0.8068 176 0.7874 0.8137 0.8004 0.9561
0.009 26.0 20644 0.3683 0.9146 0.8523 0.8824 88 0.8229 0.9172 0.8675 157 0.9007 0.8881 0.8944 143 0.6607 0.7551 0.7048 49 0.7316 0.7809 0.7554 178 0.8441 0.8820 0.8626 178 0.8317 0.7778 0.8038 108 0.7310 0.7530 0.7418 166 0.7576 0.8097 0.7828 247 0.8286 0.8657 0.8467 67 0.7791 0.7614 0.7701 176 0.7960 0.8221 0.8088 0.9584
0.0105 27.0 21438 0.3624 0.8280 0.875 0.8508 88 0.8352 0.9363 0.8829 157 0.8592 0.8531 0.8561 143 0.4795 0.7143 0.5738 49 0.7158 0.7360 0.7258 178 0.8197 0.8427 0.8310 178 0.7068 0.8704 0.7801 108 0.6878 0.7831 0.7324 166 0.7741 0.7490 0.7613 247 0.8088 0.8209 0.8148 67 0.7644 0.7557 0.76 176 0.7616 0.8086 0.7844 0.9552
0.0088 28.0 22232 0.3755 0.7938 0.875 0.8324 88 0.8882 0.9108 0.8994 157 0.8705 0.8462 0.8582 143 0.6481 0.7143 0.6796 49 0.6618 0.7697 0.7117 178 0.8370 0.8652 0.8508 178 0.9277 0.7130 0.8063 108 0.7414 0.7771 0.7588 166 0.7603 0.8219 0.7899 247 0.94 0.7015 0.8034 67 0.7901 0.7273 0.7574 176 0.7928 0.8035 0.7981 0.9559
0.0101 29.0 23026 0.4108 0.8587 0.8977 0.8778 88 0.8765 0.9045 0.8903 157 0.8676 0.8252 0.8459 143 0.5286 0.7551 0.6218 49 0.7005 0.7360 0.7178 178 0.8162 0.8483 0.8320 178 0.8646 0.7685 0.8137 108 0.7225 0.7530 0.7375 166 0.7236 0.8057 0.7625 247 0.9423 0.7313 0.8235 67 0.7870 0.7557 0.7710 176 0.7808 0.8009 0.7907 0.9526
0.0087 30.0 23820 0.3898 0.8764 0.8864 0.8814 88 0.9114 0.9172 0.9143 157 0.9015 0.8322 0.8655 143 0.5333 0.6531 0.5872 49 0.6502 0.7416 0.6929 178 0.8101 0.8146 0.8123 178 0.9529 0.75 0.8394 108 0.7922 0.7349 0.7625 166 0.7635 0.7449 0.7541 247 0.8947 0.7612 0.8226 67 0.7702 0.7045 0.7359 176 0.7979 0.7784 0.7880 0.9533

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.