SentenceTransformer based on neuralmind/bert-large-portuguese-cased

This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: neuralmind/bert-large-portuguese-cased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("SenhorDasMoscas/acho-ptbr-e4-lr3e-05-30-12-2024")
# Run inference
sentences = [
    'cafe moido gourmet',
    'comida rapido fastfood',
    'bebida alcoolico',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9023
spearman_cosine 0.8365

Training Details

Training Dataset

Unnamed Dataset

  • Size: 17,687 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.51 tokens
    • max: 15 tokens
    • min: 3 tokens
    • mean: 6.42 tokens
    • max: 11 tokens
    • min: 0.1
    • mean: 0.55
    • max: 1.0
  • Samples:
    text1 text2 label
    carrinho brinquedo virar robo brinquedo jogo educativo 1.0
    cuecar boxer sensual item adulto brinquedo sexual 1.0
    alicate peixaria pescado 0.1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,966 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.59 tokens
    • max: 17 tokens
    • min: 3 tokens
    • mean: 6.47 tokens
    • max: 11 tokens
    • min: 0.1
    • mean: 0.56
    • max: 1.0
  • Samples:
    text1 text2 label
    balanco crianca item adulto brinquedo sexual 0.1
    onde comprar Chaves fenda festa decoracao festa 0.1
    querer monitor ultrawide padaria confeitaria 0.1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 3e-05
  • weight_decay: 0.1
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • warmup_steps: 220
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.1
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 220
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss eval-similarity_spearman_cosine
0.0090 5 0.2027 - -
0.0181 10 0.2312 - -
0.0271 15 0.2105 - -
0.0362 20 0.2046 - -
0.0452 25 0.1887 - -
0.0542 30 0.1768 - -
0.0633 35 0.1691 - -
0.0723 40 0.1604 - -
0.0814 45 0.1602 - -
0.0904 50 0.1578 - -
0.0995 55 0.1386 - -
0.1085 60 0.144 - -
0.1175 65 0.1238 - -
0.1266 70 0.1155 - -
0.1356 75 0.1156 - -
0.1447 80 0.0948 - -
0.1537 85 0.0999 - -
0.1627 90 0.083 - -
0.1718 95 0.0848 - -
0.1808 100 0.0947 - -
0.1899 105 0.0721 - -
0.1989 110 0.0747 - -
0.2080 115 0.1082 - -
0.2170 120 0.0836 - -
0.2260 125 0.0793 - -
0.2351 130 0.0746 - -
0.2441 135 0.063 - -
0.2532 140 0.0678 - -
0.2622 145 0.0708 - -
0.2712 150 0.0734 - -
0.2803 155 0.0668 - -
0.2893 160 0.0626 - -
0.2984 165 0.0625 - -
0.3074 170 0.0654 - -
0.3165 175 0.0686 - -
0.3255 180 0.0576 - -
0.3345 185 0.0612 - -
0.3436 190 0.0522 - -
0.3526 195 0.0607 - -
0.3617 200 0.0538 - -
0.3707 205 0.0663 - -
0.3797 210 0.0577 - -
0.3888 215 0.0681 - -
0.3978 220 0.0712 - -
0.4069 225 0.0481 - -
0.4159 230 0.0632 - -
0.4250 235 0.0597 - -
0.4340 240 0.0681 - -
0.4430 245 0.0617 - -
0.4521 250 0.0715 - -
0.4611 255 0.0574 - -
0.4702 260 0.0467 - -
0.4792 265 0.0521 - -
0.4882 270 0.0632 - -
0.4973 275 0.0693 - -
0.5063 280 0.0605 - -
0.5154 285 0.0506 - -
0.5244 290 0.0448 - -
0.5335 295 0.0565 - -
0.5425 300 0.0669 0.0522 0.8167
0.5515 305 0.0679 - -
0.5606 310 0.0582 - -
0.5696 315 0.0483 - -
0.5787 320 0.0629 - -
0.5877 325 0.0555 - -
0.5967 330 0.0437 - -
0.6058 335 0.0448 - -
0.6148 340 0.0338 - -
0.6239 345 0.0583 - -
0.6329 350 0.0555 - -
0.6420 355 0.0478 - -
0.6510 360 0.0611 - -
0.6600 365 0.064 - -
0.6691 370 0.0646 - -
0.6781 375 0.0516 - -
0.6872 380 0.0565 - -
0.6962 385 0.0573 - -
0.7052 390 0.0529 - -
0.7143 395 0.0488 - -
0.7233 400 0.0589 - -
0.7324 405 0.0555 - -
0.7414 410 0.0633 - -
0.7505 415 0.0413 - -
0.7595 420 0.0581 - -
0.7685 425 0.0477 - -
0.7776 430 0.0445 - -
0.7866 435 0.0379 - -
0.7957 440 0.0393 - -
0.8047 445 0.0393 - -
0.8137 450 0.0619 - -
0.8228 455 0.0591 - -
0.8318 460 0.0495 - -
0.8409 465 0.0348 - -
0.8499 470 0.0352 - -
0.8590 475 0.0462 - -
0.8680 480 0.0463 - -
0.8770 485 0.0772 - -
0.8861 490 0.0396 - -
0.8951 495 0.0548 - -
0.9042 500 0.042 - -
0.9132 505 0.0564 - -
0.9222 510 0.0441 - -
0.9313 515 0.0358 - -
0.9403 520 0.0669 - -
0.9494 525 0.0339 - -
0.9584 530 0.0327 - -
0.9675 535 0.058 - -
0.9765 540 0.0476 - -
0.9855 545 0.0482 - -
0.9946 550 0.0411 - -
1.0036 555 0.0527 - -
1.0127 560 0.0315 - -
1.0217 565 0.0355 - -
1.0307 570 0.033 - -
1.0398 575 0.037 - -
1.0488 580 0.0391 - -
1.0579 585 0.0456 - -
1.0669 590 0.0363 - -
1.0759 595 0.0261 - -
1.0850 600 0.0348 0.0458 0.8274
1.0940 605 0.0403 - -
1.1031 610 0.0476 - -
1.1121 615 0.0269 - -
1.1212 620 0.0277 - -
1.1302 625 0.045 - -
1.1392 630 0.0493 - -
1.1483 635 0.0175 - -
1.1573 640 0.0404 - -
1.1664 645 0.0365 - -
1.1754 650 0.0253 - -
1.1844 655 0.0444 - -
1.1935 660 0.0333 - -
1.2025 665 0.0393 - -
1.2116 670 0.0217 - -
1.2206 675 0.0265 - -
1.2297 680 0.032 - -
1.2387 685 0.0387 - -
1.2477 690 0.0351 - -
1.2568 695 0.0268 - -
1.2658 700 0.0405 - -
1.2749 705 0.0268 - -
1.2839 710 0.0298 - -
1.2929 715 0.0409 - -
1.3020 720 0.0293 - -
1.3110 725 0.0298 - -
1.3201 730 0.0222 - -
1.3291 735 0.0256 - -
1.3382 740 0.0392 - -
1.3472 745 0.0459 - -
1.3562 750 0.0234 - -
1.3653 755 0.0267 - -
1.3743 760 0.0296 - -
1.3834 765 0.0212 - -
1.3924 770 0.0239 - -
1.4014 775 0.0378 - -
1.4105 780 0.0403 - -
1.4195 785 0.0331 - -
1.4286 790 0.0194 - -
1.4376 795 0.0287 - -
1.4467 800 0.0359 - -
1.4557 805 0.0236 - -
1.4647 810 0.0253 - -
1.4738 815 0.0327 - -
1.4828 820 0.0398 - -
1.4919 825 0.0188 - -
1.5009 830 0.0359 - -
1.5099 835 0.0451 - -
1.5190 840 0.036 - -
1.5280 845 0.0502 - -
1.5371 850 0.0285 - -
1.5461 855 0.038 - -
1.5552 860 0.0239 - -
1.5642 865 0.0339 - -
1.5732 870 0.0342 - -
1.5823 875 0.0282 - -
1.5913 880 0.0252 - -
1.6004 885 0.0213 - -
1.6094 890 0.0268 - -
1.6184 895 0.0337 - -
1.6275 900 0.0567 0.0436 0.8243
1.6365 905 0.0249 - -
1.6456 910 0.0342 - -
1.6546 915 0.0358 - -
1.6637 920 0.0495 - -
1.6727 925 0.0351 - -
1.6817 930 0.0357 - -
1.6908 935 0.0442 - -
1.6998 940 0.0236 - -
1.7089 945 0.02 - -
1.7179 950 0.0516 - -
1.7269 955 0.0304 - -
1.7360 960 0.0343 - -
1.7450 965 0.0261 - -
1.7541 970 0.0304 - -
1.7631 975 0.0266 - -
1.7722 980 0.0306 - -
1.7812 985 0.0274 - -
1.7902 990 0.0427 - -
1.7993 995 0.0391 - -
1.8083 1000 0.0435 - -
1.8174 1005 0.0371 - -
1.8264 1010 0.0357 - -
1.8354 1015 0.031 - -
1.8445 1020 0.0338 - -
1.8535 1025 0.0372 - -
1.8626 1030 0.0496 - -
1.8716 1035 0.0223 - -
1.8807 1040 0.034 - -
1.8897 1045 0.0276 - -
1.8987 1050 0.0273 - -
1.9078 1055 0.0345 - -
1.9168 1060 0.0374 - -
1.9259 1065 0.0276 - -
1.9349 1070 0.0399 - -
1.9439 1075 0.0251 - -
1.9530 1080 0.0329 - -
1.9620 1085 0.0263 - -
1.9711 1090 0.036 - -
1.9801 1095 0.0325 - -
1.9892 1100 0.0333 - -
1.9982 1105 0.0287 - -
2.0072 1110 0.0266 - -
2.0163 1115 0.0186 - -
2.0253 1120 0.0167 - -
2.0344 1125 0.037 - -
2.0434 1130 0.0294 - -
2.0524 1135 0.0181 - -
2.0615 1140 0.0196 - -
2.0705 1145 0.0127 - -
2.0796 1150 0.0261 - -
2.0886 1155 0.0133 - -
2.0976 1160 0.0233 - -
2.1067 1165 0.0189 - -
2.1157 1170 0.0266 - -
2.1248 1175 0.0155 - -
2.1338 1180 0.0327 - -
2.1429 1185 0.0248 - -
2.1519 1190 0.0222 - -
2.1609 1195 0.0201 - -
2.1700 1200 0.0186 0.0402 0.8352
2.1790 1205 0.0301 - -
2.1881 1210 0.0141 - -
2.1971 1215 0.0204 - -
2.2061 1220 0.0213 - -
2.2152 1225 0.01 - -
2.2242 1230 0.0112 - -
2.2333 1235 0.027 - -
2.2423 1240 0.0215 - -
2.2514 1245 0.028 - -
2.2604 1250 0.024 - -
2.2694 1255 0.0216 - -
2.2785 1260 0.027 - -
2.2875 1265 0.0206 - -
2.2966 1270 0.0364 - -
2.3056 1275 0.0266 - -
2.3146 1280 0.0262 - -
2.3237 1285 0.0194 - -
2.3327 1290 0.0343 - -
2.3418 1295 0.0123 - -
2.3508 1300 0.0189 - -
2.3599 1305 0.0233 - -
2.3689 1310 0.0286 - -
2.3779 1315 0.0228 - -
2.3870 1320 0.0138 - -
2.3960 1325 0.0317 - -
2.4051 1330 0.0278 - -
2.4141 1335 0.015 - -
2.4231 1340 0.0293 - -
2.4322 1345 0.0224 - -
2.4412 1350 0.0174 - -
2.4503 1355 0.0123 - -
2.4593 1360 0.0293 - -
2.4684 1365 0.0134 - -
2.4774 1370 0.0217 - -
2.4864 1375 0.0207 - -
2.4955 1380 0.0352 - -
2.5045 1385 0.0232 - -
2.5136 1390 0.018 - -
2.5226 1395 0.0373 - -
2.5316 1400 0.0248 - -
2.5407 1405 0.037 - -
2.5497 1410 0.019 - -
2.5588 1415 0.0212 - -
2.5678 1420 0.0192 - -
2.5769 1425 0.0209 - -
2.5859 1430 0.0349 - -
2.5949 1435 0.0134 - -
2.6040 1440 0.0191 - -
2.6130 1445 0.0125 - -
2.6221 1450 0.0177 - -
2.6311 1455 0.0277 - -
2.6401 1460 0.0265 - -
2.6492 1465 0.0363 - -
2.6582 1470 0.0229 - -
2.6673 1475 0.0291 - -
2.6763 1480 0.0165 - -
2.6854 1485 0.0229 - -
2.6944 1490 0.0247 - -
2.7034 1495 0.0139 - -
2.7125 1500 0.0191 0.0397 0.8344
2.7215 1505 0.0172 - -
2.7306 1510 0.0147 - -
2.7396 1515 0.0238 - -
2.7486 1520 0.0275 - -
2.7577 1525 0.0274 - -
2.7667 1530 0.0276 - -
2.7758 1535 0.0178 - -
2.7848 1540 0.0206 - -
2.7939 1545 0.0107 - -
2.8029 1550 0.0167 - -
2.8119 1555 0.0188 - -
2.8210 1560 0.0261 - -
2.8300 1565 0.0177 - -
2.8391 1570 0.0213 - -
2.8481 1575 0.0291 - -
2.8571 1580 0.0251 - -
2.8662 1585 0.0303 - -
2.8752 1590 0.0242 - -
2.8843 1595 0.0217 - -
2.8933 1600 0.0101 - -
2.9024 1605 0.0218 - -
2.9114 1610 0.0163 - -
2.9204 1615 0.0149 - -
2.9295 1620 0.0159 - -
2.9385 1625 0.022 - -
2.9476 1630 0.0242 - -
2.9566 1635 0.017 - -
2.9656 1640 0.0204 - -
2.9747 1645 0.0176 - -
2.9837 1650 0.0221 - -
2.9928 1655 0.0265 - -
3.0018 1660 0.0193 - -
3.0108 1665 0.0172 - -
3.0199 1670 0.016 - -
3.0289 1675 0.0128 - -
3.0380 1680 0.0205 - -
3.0470 1685 0.0123 - -
3.0561 1690 0.0111 - -
3.0651 1695 0.0163 - -
3.0741 1700 0.0283 - -
3.0832 1705 0.0134 - -
3.0922 1710 0.0169 - -
3.1013 1715 0.0159 - -
3.1103 1720 0.0153 - -
3.1193 1725 0.0136 - -
3.1284 1730 0.0093 - -
3.1374 1735 0.0222 - -
3.1465 1740 0.0156 - -
3.1555 1745 0.0124 - -
3.1646 1750 0.0145 - -
3.1736 1755 0.0196 - -
3.1826 1760 0.0125 - -
3.1917 1765 0.0054 - -
3.2007 1770 0.0174 - -
3.2098 1775 0.0106 - -
3.2188 1780 0.0127 - -
3.2278 1785 0.01 - -
3.2369 1790 0.0064 - -
3.2459 1795 0.011 - -
3.2550 1800 0.0162 0.0399 0.8343
3.2640 1805 0.0109 - -
3.2731 1810 0.0202 - -
3.2821 1815 0.0169 - -
3.2911 1820 0.0121 - -
3.3002 1825 0.0152 - -
3.3092 1830 0.0255 - -
3.3183 1835 0.0205 - -
3.3273 1840 0.0137 - -
3.3363 1845 0.0108 - -
3.3454 1850 0.0195 - -
3.3544 1855 0.028 - -
3.3635 1860 0.0253 - -
3.3725 1865 0.0177 - -
3.3816 1870 0.0102 - -
3.3906 1875 0.0114 - -
3.3996 1880 0.01 - -
3.4087 1885 0.0105 - -
3.4177 1890 0.0123 - -
3.4268 1895 0.0116 - -
3.4358 1900 0.0157 - -
3.4448 1905 0.0197 - -
3.4539 1910 0.0172 - -
3.4629 1915 0.011 - -
3.4720 1920 0.0106 - -
3.4810 1925 0.0199 - -
3.4901 1930 0.0166 - -
3.4991 1935 0.0284 - -
3.5081 1940 0.0138 - -
3.5172 1945 0.0252 - -
3.5262 1950 0.017 - -
3.5353 1955 0.0234 - -
3.5443 1960 0.0173 - -
3.5533 1965 0.0136 - -
3.5624 1970 0.0184 - -
3.5714 1975 0.0128 - -
3.5805 1980 0.0162 - -
3.5895 1985 0.0185 - -
3.5986 1990 0.0201 - -
3.6076 1995 0.018 - -
3.6166 2000 0.0157 - -
3.6257 2005 0.0208 - -
3.6347 2010 0.0267 - -
3.6438 2015 0.0121 - -
3.6528 2020 0.0197 - -
3.6618 2025 0.0141 - -
3.6709 2030 0.0154 - -
3.6799 2035 0.0049 - -
3.6890 2040 0.0171 - -
3.6980 2045 0.0087 - -
3.7071 2050 0.0102 - -
3.7161 2055 0.009 - -
3.7251 2060 0.0171 - -
3.7342 2065 0.0181 - -
3.7432 2070 0.0144 - -
3.7523 2075 0.0116 - -
3.7613 2080 0.0175 - -
3.7703 2085 0.0205 - -
3.7794 2090 0.0153 - -
3.7884 2095 0.0146 - -
3.7975 2100 0.0155 0.0385 0.8365
3.8065 2105 0.0101 - -
3.8156 2110 0.0101 - -
3.8246 2115 0.0238 - -
3.8336 2120 0.0087 - -
3.8427 2125 0.0071 - -
3.8517 2130 0.0192 - -
3.8608 2135 0.013 - -
3.8698 2140 0.0049 - -
3.8788 2145 0.0119 - -
3.8879 2150 0.0071 - -
3.8969 2155 0.0126 - -
3.9060 2160 0.0224 - -
3.9150 2165 0.0117 - -
3.9241 2170 0.0258 - -
3.9331 2175 0.0191 - -
3.9421 2180 0.0255 - -
3.9512 2185 0.0076 - -
3.9602 2190 0.0168 - -
3.9693 2195 0.0138 - -
3.9783 2200 0.0098 - -
3.9873 2205 0.0217 - -
3.9964 2210 0.0143 - -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 2.14.4
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
17
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SenhorDasMoscas/acho-ptbr-e4-lr3e-05-30-12-2024

Finetuned
(39)
this model

Evaluation results