Probably don't use this model, I'm just tinkering, but it's a multi-turn, multi-speaker model attempt trained from /r/wallstreetbets data that you can find: https://huggingface.co/datasets/Sentdex/WSB-003.004

#https://huggingface.co/docs/peft/quicktour 

from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
import torch

model = AutoPeftModelForCausalLM.from_pretrained("Sentdex/Walls1337bot-Llama2-7B-003.004.500")
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf")

model = model.to("cuda")
model.eval()

prompt = "Your text here."
formatted_prompt = f"### BEGIN CONVERSATION ###\n\n## Speaker_0: ##\n{prompt}\n\n## Walls1337bot: ##\n"
inputs = tokenizer(formatted_prompt, return_tensors="pt")
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=128)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train Sentdex/Walls1337bot-Llama2-7B-003.004.500