File size: 39,911 Bytes
a5fa82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
---
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2320
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: DENNIE FOSTE Men's Poly Cotton Washed Light Blue Jeans(DF-JNS-015)
  sentences:
  - https://www.amazon.in/dp/B0BZDFGSCR
  - DENNIE FOSTE presents this streachable fabric Polycotton jeans. It's good quality
    fabric would certainly make you feel good and confident when you wear it. Comfortable
    front pockets, comfortable back pockets, highly durable and stretchable jeans
    for man. Perfect for casual, beach parties wear high on style and quality, these
    stretchable jeans are as versatile as they are comfortable. Wear it with a casual
    tee for a smart look. Wear it casually and be at ease throughout the day or it
    can also blend to perfection on your special ocassions.
  - urbano fashion mens slim fit jeans
- source_sentence: ZESICA Women's 2023 Summer Bohemian Solid Color Lace Trim Flowy
    A Line Beach Long Maxi Skirt with Pockets
  sentences:
  - aratlench acrylic pendant necklace earrings  long statement leaf charm necklace
    tortoise resin palm leaf earrings fashion necklaces earrings for women girls
  - https://www.amazon.com/dp/B09X19HV5D
  - zesica womens 2023 summer bohemian solid color lace trim flowy a line beach long
    maxi skirt with pockets
- source_sentence: DHRUVI TRENDZ Men's Shirts || Rayon Tropical Printed Shirts for
    Men || Summer Wear Shirt for Men || Perfect for Outing || Vacation || DateWear
    Shirt for Boys || Gift for Men
  sentences:
  - om sai latest creation shirt for men  rayon shirts for men  tropical leaf printed
    short sleeve  spread collar shirts for boy  casual beach wear festive shirt for
    men
  - https://www.amazon.in/dp/B0C18PR364
  - Men's Fashion Products Are Our partywear outfit collection for men includes a
    shirt neckline, Short-sleeves, and a button placket on the front. Perfect Regular
    Fit with Best Look. simple spread collar and soft felt in the fabric which makes
    the shirt very easy and comfortable to wear casually. From the newest designs
    and trendiest styles for men we are making fashionable clothing affordable. Shirts
    feel soft and light on the body. Pairing with the right colored denim we can imagine
    the outfit is best suited for dining parties and night outs. Our men's Tropical
    shirts are made of the Best fabric which is lightweight and breathable. Perfect
    for summer and hot weather keeps your body dry and comfortable all day. This casual
    summer shirts design with a Fancy Hawaii collar, short sleeve, botton down, Tropical
    print and classic regular fit. This beach shirts with multiple unique color and
    pattern, each of which is a unique experience, make you shine this summer. Perfect
    gift for yourself, families, or friends. Perfect for camp, sun beach, birthday
    party, vacation, bachelor party, cruise, camp, or any casual daily wear.
- source_sentence: Molie Bridal Austrian Crystal Necklace and Earrings Jewelry Set
    Gifts fit with Wedding Dress
  sentences:
  - You should have this jewelry set near you all the time since it is so fashion
    and eye-catching. You can wear it and have it with you to support you wherever
    you go. Make a statement with this wonderful jewelry set. Molie Molie has been
    found for many years, referred to "Molie", which denotes to treat all of the world's
    women like an Molie jewelry and meet their fantasies and satisfactions. We have
    our own factory to ensure our items' plating and the strict criteria of the plating
    thickness. The physical characteristics of human require us to adopt a higher
    standard of plating process. At the same time, it create a good condition to reduce
    production cost while maintain high quality of our item. Moreover, We are committed
    to provide customers with competitive products and best customer services, since
    its inception has been its high quality themselves, stylish design, superb manufacturing
    process. Besides, we concentrate on improving the service based on the creative,
    showing brand attributes. All in all, we take Customers' satisfactions as our
    first priority.
  - https://www.amazon.com/dp/B071VM3BKW
  - coofandy mens short sleeve hoodie relaxed fit fashion casual sweatshirts lightweight
    hip hop streetwear t shirts
- source_sentence: Steve Madden Clutch Crossbody
  sentences:
  - https://www.amazon.com/dp/B07VCDT9VR
  - See and BSCENE with this Clear bag. Carry it as a crossbody or clutch. The exterior
    is Clear and includes an internal pouch.
  - womens dezier mens regular shirt 6032sformal1110multicolor extra large
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy
      value: 1.0
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.0
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 1.0
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 1.0
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 1.0
      name: Max Accuracy
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Steve Madden Clutch Crossbody',
    'See and BSCENE with this Clear bag. Carry it as a crossbody or clutch. The exterior is Clear and includes an internal pouch.',
    'https://www.amazon.com/dp/B07VCDT9VR',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value   |
|:-------------------|:--------|
| cosine_accuracy    | 1.0     |
| dot_accuracy       | 0.0     |
| manhattan_accuracy | 1.0     |
| euclidean_accuracy | 1.0     |
| **max_accuracy**   | **1.0** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,320 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 21.75 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 59.78 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 23.3 tokens</li><li>max: 25 tokens</li></ul> |
* Samples:
  | anchor                                                                                                        | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | negative                                          |
  |:--------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|
  | <code>Shiaili Classic Plus Size Skirts for Women Flowy Pleated Midi Length Skirt</code>                       | <code>shiaili classic plus size skirts for women flowy pleated midi length skirt</code>                                                                                                                                                                                                                                                                                                                                                                                             | <code>https://www.amazon.com/dp/B0BMTRJRG6</code> |
  | <code>ANRABESS Women's Casual Long Sleeve Draped Open Front Knit Pockets Long Cardigan Jackets Sweater</code> | <code>anrabess womens casual long sleeve draped open front knit pockets long cardigan jackets sweater</code>                                                                                                                                                                                                                                                                                                                                                                        | <code>https://www.amazon.com/dp/B0B2W6QGYB</code> |
  | <code>RipSkirt Hawaii | Length 2 with Pockets | Quick Wrap, Quick Dry, Travel Skirt with Side Pockets</code>  | <code>RipSkirt Hawaii is the active woman’s perfect skirt. Wear your RipSkirt straight from the beach to the bistro, we’ve got you covered. Our custom fabric doesn’t cling, flatters almost every figure, repels water, and dries quickly if soaked. [no more wet bum marks when leaving the pool] Length 2 is our most popular length and is perfect for work, play, and around town and has side pockets deep enough for a large phone. Content: 93% polyester 7% spandex</code> | <code>https://www.amazon.com/dp/B09X714HBM</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 580 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           | negative                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 21.92 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 55.98 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 23.37 tokens</li><li>max: 25 tokens</li></ul> |
* Samples:
  | anchor                                                                                                               | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | negative                                          |
  |:---------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|
  | <code>Hotouch Lightweight Crochet Cardigan for Women Long Sleeve Open Front Knit Oversized Cardigans Sweaters</code> | <code>hotouch lightweight crochet cardigan for women long sleeve open front knit oversized cardigans sweaters</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>https://www.amazon.com/dp/B0C1FM1JDZ</code> |
  | <code>SEIKO Men's SNK809 5 Automatic Stainless Steel Watch with Black Canvas Strap</code>                            | <code>Black dial. Silver-tone stainless steel case with a black canvas band. Automatic movement. 30 meters / 100 feet water resistance. Fixed bezel. Tang clasp. Case size 37 mm x 11 mm. Seiko SNK809 Seiko 5 Watch.The Seiko 5 Men's Automatic Black Strap Black Dial Watch is a stylish timepiece with the convenience of automatic movement. A uniquely designed, black dial features white Arabic numbers marking the hours on an inner circle and the minutes on an outer circle, while small, bar indexes encircle the dial on an outside minute track. Silver-tone hands with luminous fill make it easy to tell time day or night, and the slim second hand is detailed with a red accent. For added convenience, a day and date display are set at three o'clock. The polished stainless steel case extends to meet the black nylon strap, which wraps comfortably around the wrist and fastens with a traditional buckle. Water resistant to 30 feet (100 meters), this high-performance watch is perfect for everyday wear.This is an automatic mechanical watch. Automatic watches do not operate on batteries, instead, they are powered automatically by the movement of the wearer’s arm. If the main spring in your automatic watch is not wound sufficiently, timekeeping may become less accurate. In order to maintain accuracy, wear the watch for 8 hours or more per day, or manually wind the main spring by turning the crown. When not in use, automatic watches may be kept charged with an automatic watch winder – a watch storage unit which may be purchased separately. From Humble beginnings, Kintaro Hattori’s Vision for Seiko has become reality. A consuming passion for excellence - imprinted in our Corporate DNA passed from generation to generation. Seiko, for 125 years committed to the art and science of time. A culture of innovation connects a 19th century Tokyo clock shop with 20th century advances in timekeeping to an extraordinary 21st century "quiet revolution." Continually driven by dedication and passion, established a multitude of world’s first technologies… transforming the principles of timekeeping.  The first quartz wristwatch – changed the history of time.  The first Kinetic – marked a new era in quartz watch technology.  In 1969, Seiko Astron, the first quartz wristwatch - was introduced.  In an instant, Seiko exponentially improved the accuracy of wristwatches –And Seiko technology firmly established today’s standard in Olympic and sports timing.  1984, another celebrated first – Kinetic Technology – powered by body movement.  Kinetic – a quartz mechanism with unparalleled accuracy –the driving force behind more world’s firsts.  Kinetic Chronograph – the next generation of high performance timekeeping.  Kinetic Auto Relay – automatically resets to the correct time.  Kinetic Perpetual - combining the date perfect technology of perpetual calendar with the genius of Kinetic Auto Relay.  And now Kinetic Direct Drive – move, and the watch is powered automatically. Or hand wind it and see the power you are generating in real time.  In the realm of fine watches, time is measured by Seiko innovation – A heritage of dedication to the art and science of time.See more</code> | <code>https://www.amazon.com/dp/B002SSUQFG</code> |
  | <code>Carhartt Men's Rain Defender Loose Fit Midweight Thermal-Lined Full-Zip Sweatshirt</code>                      | <code>This men's full-zip sweatshirt is equipped for light rain. Made from midweight fleece with a water-repellent finish and thermal lining. Features inner and outer pockets that include storage for your phone. 10.5-ounce, 50% cotton / 50% polyester fleece. Polyester fleece lining for warmth. Rain Defender® durable water repellent (DWR) keeps you dry and moving in light rain. Original fit. Full-zip front with brass zipper. Attached, thermal-lined three-piece hood with drawcord closure. Spandex-reinforced rib-knit cuffs and waist help keep out the cold. Two front handwarmer pockets with flaps for added security. Hidden media pocket. Inside pocket with zipper closure. Locker loop.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>https://www.amazon.com/dp/B08BG5V4KR</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `learning_rate`: 3e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `ddp_find_unused_parameters`: False

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | max_accuracy |
|:------:|:----:|:-------------:|:------:|:------------:|
| 0.0862 | 25   | 0.3631        | -      | -            |
| 0.1724 | 50   | 0.1219        | -      | -            |
| 0.2586 | 75   | 0.1909        | -      | -            |
| 0.3448 | 100  | 0.24          | -      | -            |
| 0.4310 | 125  | 0.1607        | -      | -            |
| 0.5172 | 150  | 0.1103        | -      | -            |
| 0.6034 | 175  | 0.0952        | -      | -            |
| 0.6897 | 200  | 0.1139        | -      | -            |
| 0.7759 | 225  | 0.1335        | -      | -            |
| 0.8621 | 250  | 0.0758        | -      | -            |
| 0.9483 | 275  | 0.0902        | -      | -            |
| 1.0    | 290  | -             | 0.0700 | 1.0          |
| 1.0345 | 300  | 0.0951        | -      | -            |
| 1.1207 | 325  | 0.0373        | -      | -            |
| 1.2069 | 350  | 0.086         | -      | -            |
| 1.2931 | 375  | 0.0418        | -      | -            |
| 1.3793 | 400  | 0.0522        | -      | -            |
| 1.4655 | 425  | 0.0387        | -      | -            |
| 1.5517 | 450  | 0.0217        | -      | -            |
| 1.6379 | 475  | 0.0455        | -      | -            |
| 1.7241 | 500  | 0.0424        | -      | -            |
| 1.8103 | 525  | 0.0238        | -      | -            |
| 1.8966 | 550  | 0.0355        | -      | -            |
| 1.9828 | 575  | 0.0283        | -      | -            |
| 2.0    | 580  | -             | 0.0597 | 1.0          |
| 2.0690 | 600  | 0.0213        | -      | -            |
| 2.1552 | 625  | 0.0219        | -      | -            |
| 2.2414 | 650  | 0.0254        | -      | -            |
| 2.3276 | 675  | 0.0204        | -      | -            |
| 2.4138 | 700  | 0.0052        | -      | -            |
| 2.5    | 725  | 0.0248        | -      | -            |
| 2.5862 | 750  | 0.0507        | -      | -            |
| 2.6724 | 775  | 0.0191        | -      | -            |
| 2.7586 | 800  | 0.018         | -      | -            |
| 2.8448 | 825  | 0.0176        | -      | -            |
| 2.9310 | 850  | 0.0193        | -      | -            |
| 3.0    | 870  | -             | 0.0566 | 1.0          |


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.42.2
- PyTorch: 2.3.0
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->