Timesformer_WLASL_100_200_epochs_p20_SR_16

This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2599
  • Top 1 Accuracy: 0.5828
  • Top 5 Accuracy: 0.7899
  • Top 10 Accuracy: 0.8698
  • Accuracy: 0.5828
  • Precision: 0.5806
  • Recall: 0.5828
  • F1: 0.5510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 36000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Top 1 Accuracy Top 5 Accuracy Top 10 Accuracy Accuracy Precision Recall F1
19.1155 0.005 180 4.6927 0.0089 0.0414 0.0888 0.0089 0.0155 0.0089 0.0105
18.5538 1.0050 360 4.5821 0.0266 0.0769 0.1302 0.0266 0.0137 0.0266 0.0116
17.5848 2.0050 540 4.3988 0.0562 0.1450 0.2633 0.0562 0.0486 0.0562 0.0390
15.8283 3.0050 721 4.0516 0.1302 0.2959 0.4645 0.1302 0.1012 0.1302 0.0976
13.3102 4.005 901 3.6150 0.2249 0.4704 0.6154 0.2249 0.1781 0.2249 0.1741
11.2113 5.0050 1081 3.2389 0.2604 0.6065 0.7367 0.2604 0.2422 0.2604 0.2215
8.898 6.0050 1261 2.8714 0.3757 0.6775 0.8166 0.3757 0.3584 0.3757 0.3324
6.715 7.0050 1442 2.6518 0.4231 0.7249 0.8402 0.4231 0.3828 0.4231 0.3730
4.8442 8.005 1622 2.3294 0.4645 0.7929 0.8876 0.4645 0.5077 0.4645 0.4377
3.3825 9.0050 1802 2.1747 0.4911 0.7899 0.8964 0.4911 0.5436 0.4911 0.4654
2.0471 10.0050 1982 1.9990 0.5148 0.8107 0.9053 0.5178 0.5871 0.5178 0.5057
1.3242 11.0050 2163 1.8964 0.5473 0.8166 0.8935 0.5473 0.5822 0.5473 0.5199
0.8746 12.005 2343 1.8222 0.5562 0.8254 0.9083 0.5562 0.5796 0.5562 0.5320
0.5537 13.0050 2523 1.7525 0.5769 0.8343 0.9142 0.5769 0.5813 0.5769 0.5468
0.4081 14.0050 2703 1.7351 0.5947 0.8136 0.8964 0.5947 0.6684 0.5947 0.5834
0.17 15.0050 2884 1.6998 0.5592 0.8225 0.9083 0.5592 0.5763 0.5592 0.5342
0.2053 16.005 3064 1.7340 0.5651 0.8343 0.9083 0.5651 0.6215 0.5651 0.5390
0.1434 17.0050 3244 1.7350 0.6006 0.8432 0.9142 0.6006 0.6347 0.6006 0.5806
0.1957 18.0050 3424 1.8179 0.5621 0.8373 0.9142 0.5621 0.6060 0.5621 0.5350
0.1636 19.0050 3605 1.7831 0.6154 0.8225 0.8905 0.6154 0.6401 0.6154 0.5917
0.0908 20.005 3785 1.7552 0.6213 0.8402 0.9053 0.6213 0.6504 0.6213 0.6014
0.058 21.0050 3965 1.8422 0.6243 0.8254 0.9112 0.6213 0.6392 0.6213 0.5962
0.0924 22.0050 4145 1.8347 0.6006 0.8225 0.9201 0.6006 0.6218 0.6006 0.5735
0.0799 23.0050 4326 1.9650 0.6036 0.8107 0.8846 0.6036 0.6182 0.6036 0.5724
0.176 24.005 4506 1.9326 0.5858 0.8402 0.9142 0.5858 0.6240 0.5858 0.5671
0.0786 25.0050 4686 1.7753 0.6124 0.8491 0.9142 0.6124 0.6607 0.6124 0.5998
0.242 26.0050 4866 2.0219 0.5769 0.7722 0.8876 0.5769 0.6337 0.5769 0.5552
0.1767 27.0050 5047 1.9744 0.5828 0.8166 0.9024 0.5828 0.6330 0.5828 0.5721
0.14 28.005 5227 2.1996 0.5769 0.7811 0.8609 0.5769 0.5983 0.5769 0.5430
0.104 29.0050 5407 2.0881 0.5769 0.8166 0.8876 0.5769 0.6146 0.5769 0.5641
0.1454 30.0050 5587 2.3394 0.5621 0.7959 0.8905 0.5621 0.6280 0.5621 0.5448
0.2221 31.0050 5768 1.9360 0.5947 0.8225 0.9024 0.5947 0.6606 0.5947 0.5881
0.1026 32.005 5948 2.0920 0.6036 0.8107 0.8935 0.6036 0.6376 0.6036 0.5832
0.0968 33.0050 6128 2.2746 0.5740 0.8047 0.8846 0.5740 0.6308 0.5740 0.5542
0.1864 34.0050 6308 2.2081 0.5888 0.8047 0.8698 0.5888 0.6394 0.5888 0.5704
0.1353 35.0050 6489 2.1853 0.5799 0.8254 0.8935 0.5799 0.6133 0.5799 0.5636
0.1618 36.005 6669 2.2661 0.5710 0.7959 0.8698 0.5710 0.6243 0.5710 0.5515
0.259 37.0050 6849 2.3163 0.5740 0.7870 0.8580 0.5740 0.6088 0.5740 0.5459
0.3394 38.0050 7029 2.0984 0.5769 0.7988 0.8905 0.5769 0.6154 0.5769 0.5614
0.0833 39.0050 7210 2.2811 0.5533 0.8047 0.8698 0.5533 0.6051 0.5533 0.5328
0.1259 40.005 7390 2.2599 0.5828 0.7899 0.8698 0.5828 0.5806 0.5828 0.5510

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
11
Safetensors
Model size
121M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shawon16/Timesformer_WLASL_100_200_epochs_p20_SR_16

Finetuned
(49)
this model