ViViT_WLASL_100_SR_4_ep200_p20

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7950
  • Accuracy: 0.6272
  • Precision: 0.6755
  • Recall: 0.6272
  • F1: 0.6047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 36000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
18.9788 0.005 180 4.6909 0.0266 0.0055 0.0266 0.0082
18.6803 1.0050 360 4.6180 0.0266 0.0034 0.0266 0.0058
18.0341 2.0050 540 4.5181 0.0473 0.0205 0.0473 0.0238
17.0617 3.0050 721 4.3376 0.0740 0.0541 0.0740 0.0478
15.6302 4.005 901 4.0709 0.1183 0.0772 0.1183 0.0815
14.0851 5.0050 1081 3.7552 0.1864 0.1536 0.1864 0.1449
11.953 6.0050 1261 3.4065 0.2663 0.2643 0.2663 0.2221
9.8223 7.0050 1442 3.1038 0.3373 0.3284 0.3373 0.2944
7.8126 8.005 1622 2.7834 0.4142 0.4201 0.4142 0.3676
6.0952 9.0050 1802 2.5129 0.4763 0.4950 0.4763 0.4368
4.3155 10.0050 1982 2.2757 0.5059 0.5594 0.5059 0.4894
3.0214 11.0050 2163 2.0460 0.5473 0.5640 0.5473 0.5178
2.0687 12.005 2343 1.8803 0.5917 0.6184 0.5917 0.5731
1.3523 13.0050 2523 1.7261 0.5917 0.6065 0.5917 0.5601
0.7828 14.0050 2703 1.6275 0.6036 0.6644 0.6036 0.5924
0.4222 15.0050 2884 1.5284 0.6420 0.6756 0.6420 0.6245
0.3113 16.005 3064 1.5459 0.6272 0.6664 0.6272 0.6092
0.2021 17.0050 3244 1.4441 0.6657 0.6991 0.6657 0.6484
0.1698 18.0050 3424 1.5340 0.6124 0.6511 0.6124 0.5942
0.1199 19.0050 3605 1.3935 0.6509 0.6746 0.6509 0.6288
0.0244 20.005 3785 1.4782 0.6686 0.7130 0.6686 0.6574
0.0407 21.0050 3965 1.3890 0.6686 0.7149 0.6686 0.6557
0.0719 22.0050 4145 1.4897 0.6598 0.7189 0.6598 0.6477
0.1163 23.0050 4326 1.3919 0.6716 0.7218 0.6716 0.6639
0.1167 24.005 4506 1.5690 0.6538 0.7189 0.6538 0.6380
0.0366 25.0050 4686 1.5032 0.6746 0.6979 0.6746 0.6541
0.1065 26.0050 4866 1.4893 0.6391 0.6475 0.6391 0.6135
0.0454 27.0050 5047 1.5013 0.6243 0.6601 0.6243 0.6022
0.0844 28.005 5227 1.5609 0.6598 0.6974 0.6598 0.6388
0.109 29.0050 5407 1.4840 0.6657 0.7151 0.6657 0.6507
0.1508 30.0050 5587 1.8017 0.6036 0.6784 0.6036 0.5903
0.1114 31.0050 5768 1.6676 0.6391 0.6721 0.6391 0.6134
0.0931 32.005 5948 1.5345 0.6746 0.7082 0.6746 0.6520
0.0619 33.0050 6128 1.7462 0.6302 0.6424 0.6302 0.6008
0.2698 34.0050 6308 1.7032 0.6331 0.6711 0.6331 0.6126
0.1108 35.0050 6489 1.7695 0.6538 0.6784 0.6538 0.6265
0.1006 36.005 6669 2.0188 0.5828 0.6289 0.5828 0.5661
0.0823 37.0050 6849 1.6487 0.6568 0.6874 0.6568 0.6425
0.0632 38.0050 7029 1.8014 0.6361 0.6917 0.6361 0.6253
0.1162 39.0050 7210 1.6741 0.6450 0.6672 0.6450 0.6196
0.0846 40.005 7390 1.8032 0.6361 0.6948 0.6361 0.6205
0.1528 41.0050 7570 1.8375 0.6331 0.6732 0.6331 0.6102
0.0695 42.0050 7750 1.6722 0.6568 0.7030 0.6568 0.6417
0.1516 43.0050 7931 1.7811 0.6716 0.7009 0.6716 0.6495
0.1565 44.005 8111 1.8077 0.6538 0.6884 0.6538 0.6347
0.0728 45.0050 8291 1.7950 0.6272 0.6755 0.6272 0.6047

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
10
Safetensors
Model size
88.7M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shawon16/ViViT_WLASL_100_SR_4_ep200_p20

Finetuned
(54)
this model