metadata
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Llama-2-7b-chat-hf
model-index:
- name: llama-ad-gen
results: []
llama-ad-gen
This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6105
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.789 | 0.25 | 25 | 0.8160 |
0.5458 | 0.5 | 50 | 0.6579 |
0.4236 | 0.75 | 75 | 0.6201 |
0.339 | 1.0 | 100 | 0.6105 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.14.1
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
Framework versions
- PEFT 0.6.0.dev0