Visualize in Weights & Biases

wav2vec2-kanji-base-char-0916

This model is a fine-tuned version of rinna/japanese-wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0080
  • Cer: 0.3084
  • Wer: 0.999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 77380
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
3.5786 1.0 19348 3.4423 0.5827 1.0
1.5754 2.0 38696 2.3013 0.5027 1.0
1.2976 3.0 58044 2.1926 0.4518 1.0
1.1784 4.0 77392 1.8865 0.4352 1.0
1.1072 5.0 96740 1.8018 0.4392 1.0
1.0466 6.0 116088 1.5333 0.4289 1.0
0.9887 7.0 135436 1.4297 0.4036 1.0
0.9497 8.0 154784 1.5539 0.4024 1.0
0.9075 9.0 174132 1.6214 0.4160 1.0
0.8721 10.0 193480 1.3556 0.3964 1.0
0.8398 11.0 212828 1.1912 0.3772 1.0
0.8069 12.0 232176 1.1510 0.3529 0.999
0.7788 13.0 251524 1.0752 0.3399 0.999
0.7477 14.0 270872 1.0926 0.3373 0.999
0.7198 15.0 290220 0.9936 0.3101 0.999
0.7028 16.0 309568 1.0239 0.3123 0.999
0.6806 17.0 328916 1.0006 0.3081 0.999
0.6733 18.0 348264 1.0348 0.3156 0.999
0.6709 19.0 367612 1.0075 0.3086 0.999
0.6651 20.0 386960 1.0080 0.3084 0.999

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
97.4M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for SiRoZaRuPa/wav2vec2-kanji-base-char-0916

Finetuned
(4)
this model