SiddharthaM's picture
update model card README.md
8a998d5
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: resnet-18-feature-extraction
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.95
          - name: Precision
            type: precision
            value: 0.9652777777777778
          - name: Recall
            type: recall
            value: 0.9788732394366197
          - name: F1
            type: f1
            value: 0.972027972027972

resnet-18-feature-extraction

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1485
  • Accuracy: 0.95
  • Precision: 0.9653
  • Recall: 0.9789
  • F1: 0.9720
  • Roc Auc: 0.8505

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
No log 0.8 2 0.6232 0.75 0.9636 0.7465 0.8413 0.7621
No log 1.8 4 0.6971 0.4875 1.0 0.4225 0.5941 0.7113
No log 2.8 6 0.7915 0.2875 1.0 0.1972 0.3294 0.5986
No log 3.8 8 0.8480 0.2875 1.0 0.1972 0.3294 0.5986
0.8651 4.8 10 0.9094 0.2562 1.0 0.1620 0.2788 0.5810
0.8651 5.8 12 0.7470 0.5625 1.0 0.5070 0.6729 0.7535
0.8651 6.8 14 0.5915 0.85 1.0 0.8310 0.9077 0.9155
0.8651 7.8 16 0.4817 0.8875 0.9844 0.8873 0.9333 0.8881
0.8651 8.8 18 0.3455 0.9187 0.9778 0.9296 0.9531 0.8815
0.5349 9.8 20 0.2966 0.9187 0.9708 0.9366 0.9534 0.8572
0.5349 10.8 22 0.2347 0.95 0.9653 0.9789 0.9720 0.8505
0.5349 11.8 24 0.2468 0.9313 0.9645 0.9577 0.9611 0.8400
0.5349 12.8 26 0.2310 0.9563 0.9720 0.9789 0.9754 0.8783
0.5349 13.8 28 0.2083 0.9313 0.9580 0.9648 0.9614 0.8157
0.3593 14.8 30 0.1840 0.9375 0.9521 0.9789 0.9653 0.7950
0.3593 15.8 32 0.1947 0.9375 0.9648 0.9648 0.9648 0.8435
0.3593 16.8 34 0.1837 0.9313 0.9517 0.9718 0.9617 0.7915
0.3593 17.8 36 0.1819 0.9437 0.9524 0.9859 0.9689 0.7985
0.3593 18.8 38 0.1924 0.9437 0.9650 0.9718 0.9684 0.8470
0.2737 19.8 40 0.1990 0.95 0.9653 0.9789 0.9720 0.8505
0.2737 20.8 42 0.1759 0.95 0.9718 0.9718 0.9718 0.8748
0.2737 21.8 44 0.1804 0.9313 0.9517 0.9718 0.9617 0.7915
0.2737 22.8 46 0.1666 0.9313 0.9517 0.9718 0.9617 0.7915
0.2737 23.8 48 0.1534 0.9437 0.9524 0.9859 0.9689 0.7985
0.2278 24.8 50 0.1612 0.9375 0.9521 0.9789 0.9653 0.7950
0.2278 25.8 52 0.1535 0.9437 0.9586 0.9789 0.9686 0.8228
0.2278 26.8 54 0.1568 0.9437 0.9716 0.9648 0.9682 0.8713
0.2278 27.8 56 0.2107 0.9375 0.9714 0.9577 0.9645 0.8678
0.2278 28.8 58 0.1592 0.9313 0.9517 0.9718 0.9617 0.7915
0.2057 29.8 60 0.1557 0.9375 0.9648 0.9648 0.9648 0.8435
0.2057 30.8 62 0.1714 0.9437 0.9650 0.9718 0.9684 0.8470
0.2057 31.8 64 0.1571 0.95 0.9653 0.9789 0.9720 0.8505
0.2057 32.8 66 0.1574 0.9375 0.9583 0.9718 0.9650 0.8192
0.2057 33.8 68 0.1423 0.9563 0.9720 0.9789 0.9754 0.8783
0.2 34.8 70 0.1677 0.9437 0.9650 0.9718 0.9684 0.8470
0.2 35.8 72 0.1560 0.9375 0.9583 0.9718 0.9650 0.8192
0.2 36.8 74 0.1594 0.9375 0.9521 0.9789 0.9653 0.7950
0.2 37.8 76 0.1512 0.9437 0.9586 0.9789 0.9686 0.8228
0.2 38.8 78 0.1396 0.9563 0.9655 0.9859 0.9756 0.8541
0.1838 39.8 80 0.1509 0.9375 0.9583 0.9718 0.9650 0.8192
0.1838 40.8 82 0.1529 0.95 0.9718 0.9718 0.9718 0.8748
0.1838 41.8 84 0.1506 0.95 0.9653 0.9789 0.9720 0.8505
0.1838 42.8 86 0.1549 0.95 0.9653 0.9789 0.9720 0.8505
0.1838 43.8 88 0.1331 0.9563 0.9655 0.9859 0.9756 0.8541
0.1872 44.8 90 0.1409 0.9437 0.9524 0.9859 0.9689 0.7985
0.1872 45.8 92 0.1639 0.9375 0.9583 0.9718 0.9650 0.8192
0.1872 46.8 94 0.1391 0.95 0.9589 0.9859 0.9722 0.8263
0.1872 47.8 96 0.1436 0.9563 0.9655 0.9859 0.9756 0.8541
0.1872 48.8 98 0.1442 0.9437 0.9586 0.9789 0.9686 0.8228
0.185 49.8 100 0.1485 0.95 0.9653 0.9789 0.9720 0.8505

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1
  • Tokenizers 0.13.1