Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: NousResearch/Meta-Llama-3.1-8B
# Automatically upload checkpoint and final model to HF
hub_model_id: Siguiente-ia/PLEX-0.1-8b

load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml

datasets:
  - path: Siguiente-ia/plex-v0.2
    type: chat_template
    field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

PLEX-0.1-8b

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B on the Siguiente-ia/plex-v0.2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6582

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.8808 0.0019 1 0.8060
0.6044 0.5003 269 0.6582

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.3.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Siguiente-ia/PLEX-0.1-8b

Finetuned
(3)
this model