|
--- |
|
tags: |
|
- Pong-PLE-v0 |
|
- reinforce |
|
- reinforcement-learning |
|
- custom-implementation |
|
- deep-rl-class |
|
model-index: |
|
- name: pong-policy |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: Pong-PLE-v0 |
|
type: Pong-PLE-v0 |
|
metrics: |
|
- type: mean_reward |
|
value: -16.00 +/- 0.00 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
## parameters |
|
pong_hyperparameters = { <br> |
|
"h_size": 64,<br> |
|
"n_training_episodes": 20000,<br> |
|
"n_evaluation_episodes": 10,<br> |
|
"max_t": 5000,<br> |
|
"gamma": 0.99,<br> |
|
"lr": 1e-2,<br> |
|
"env_id": env_id,<br> |
|
"state_space": s_size,<br> |
|
"action_space": a_size,<br> |
|
}<br> |
|
|