Sohaibsoussi's picture
Cheers πŸŽ‰
0005076 verified
metadata
library_name: transformers
license: apache-2.0
base_model: Sohaibsoussi/ViT-NIH-Chest-X-ray-dataset-small
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ViT-NIH-Chest-X-ray-dataset-small
    results: []

ViT-NIH-Chest-X-ray-dataset-small

This model is a fine-tuned version of Sohaibsoussi/ViT-NIH-Chest-X-ray-dataset-small on the Sohaibsoussi/NIH-Chest-X-ray-dataset-small dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6731
  • Accuracy: 0.2189

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 9
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0271 0.3690 100 0.0347 0.8584
0.0334 0.7380 200 0.0291 0.8624
0.0438 1.1070 300 0.0352 0.8607
0.0215 1.4760 400 0.0319 0.8746
0.0267 1.8450 500 0.0277 0.8798
0.0266 2.2140 600 0.0177 0.9116
0.014 2.5830 700 0.0127 0.9497
0.0207 2.9520 800 0.0144 0.9410
0.0115 3.3210 900 0.0097 0.9653
0.0113 3.6900 1000 0.0077 0.9711
0.0054 4.0590 1100 0.0068 0.9844
0.0047 4.4280 1200 0.0046 0.9850
0.0056 4.7970 1300 0.0040 0.9902
0.0026 5.1661 1400 0.0032 0.9925
0.0037 5.5351 1500 0.0027 0.9936
0.0039 5.9041 1600 0.0023 0.9977
0.0019 6.2731 1700 0.0019 0.9971
0.0019 6.6421 1800 0.0017 0.9988
0.0016 7.0111 1900 0.0015 1.0
0.002 7.3801 2000 0.0014 1.0
0.0013 7.7491 2100 0.0014 1.0
0.0015 8.1181 2200 0.0013 1.0
0.0011 8.4871 2300 0.0013 1.0
0.0013 8.8561 2400 0.0013 1.0

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3