File size: 2,455 Bytes
b1d3eb3
df7dcdc
 
b1d3eb3
 
df7dcdc
 
b1d3eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7dcdc
b1d3eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- en-US
license: apache-2.0
tags:
- minds14
- google/xtreme_s
- generated_from_trainer
datasets:
- xtreme_s
metrics:
- f1
- accuracy
model-index:
- name: xtreme_s_xlsr_300m_mt5-small_minds14.en-US
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xtreme_s_xlsr_300m_mt5-small_minds14.en-US

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.EN-US dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7321
- F1: 0.0154
- Accuracy: 0.0638

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 2.6067        | 3.95  | 20   | 2.6501          | 0.0112 | 0.0851   |
| 2.5614        | 7.95  | 40   | 2.8018          | 0.0133 | 0.0603   |
| 2.2836        | 11.95 | 60   | 3.0786          | 0.0084 | 0.0603   |
| 1.9597        | 15.95 | 80   | 3.2288          | 0.0126 | 0.0638   |
| 1.5566        | 19.95 | 100  | 3.6934          | 0.0178 | 0.0567   |
| 1.3168        | 23.95 | 120  | 3.9135          | 0.0150 | 0.0638   |
| 1.0598        | 27.95 | 140  | 4.2618          | 0.0084 | 0.0603   |
| 0.5721        | 31.95 | 160  | 3.7973          | 0.0354 | 0.0780   |
| 0.4402        | 35.95 | 180  | 4.6233          | 0.0179 | 0.0638   |
| 0.6113        | 39.95 | 200  | 4.6149          | 0.0208 | 0.0674   |
| 0.3938        | 43.95 | 220  | 4.7886          | 0.0159 | 0.0638   |
| 0.2473        | 47.95 | 240  | 4.7321          | 0.0154 | 0.0638   |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1