File size: 2,455 Bytes
b1d3eb3 df7dcdc b1d3eb3 df7dcdc b1d3eb3 df7dcdc b1d3eb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- en-US
license: apache-2.0
tags:
- minds14
- google/xtreme_s
- generated_from_trainer
datasets:
- xtreme_s
metrics:
- f1
- accuracy
model-index:
- name: xtreme_s_xlsr_300m_mt5-small_minds14.en-US
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xtreme_s_xlsr_300m_mt5-small_minds14.en-US
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.EN-US dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7321
- F1: 0.0154
- Accuracy: 0.0638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 2.6067 | 3.95 | 20 | 2.6501 | 0.0112 | 0.0851 |
| 2.5614 | 7.95 | 40 | 2.8018 | 0.0133 | 0.0603 |
| 2.2836 | 11.95 | 60 | 3.0786 | 0.0084 | 0.0603 |
| 1.9597 | 15.95 | 80 | 3.2288 | 0.0126 | 0.0638 |
| 1.5566 | 19.95 | 100 | 3.6934 | 0.0178 | 0.0567 |
| 1.3168 | 23.95 | 120 | 3.9135 | 0.0150 | 0.0638 |
| 1.0598 | 27.95 | 140 | 4.2618 | 0.0084 | 0.0603 |
| 0.5721 | 31.95 | 160 | 3.7973 | 0.0354 | 0.0780 |
| 0.4402 | 35.95 | 180 | 4.6233 | 0.0179 | 0.0638 |
| 0.6113 | 39.95 | 200 | 4.6149 | 0.0208 | 0.0674 |
| 0.3938 | 43.95 | 220 | 4.7886 | 0.0159 | 0.0638 |
| 0.2473 | 47.95 | 240 | 4.7321 | 0.0154 | 0.0638 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|