Splend1dchan's picture
update model card README.md
9035164
metadata
language:
  - all
license: apache-2.0
tags:
  - minds14
  - google/xtreme_s
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: xtreme_s_xlsr_t5lephone-small_minds14.en-all
    results: []

xtreme_s_xlsr_t5lephone-small_minds14.en-all

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GOOGLE/XTREME_S - MINDS14.ALL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5979
  • F1: 0.8918
  • Accuracy: 0.8921

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 150.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
2.3561 2.98 200 2.5464 0.0681 0.1334
1.1851 5.97 400 1.5056 0.5583 0.5861
1.2805 8.95 600 1.1397 0.7106 0.7044
1.0801 11.94 800 0.9863 0.7132 0.7198
0.9285 14.92 1000 0.9912 0.7037 0.7139
0.4164 17.91 1200 0.8226 0.7743 0.7741
0.7669 20.89 1400 0.8131 0.7783 0.7788
0.4606 23.88 1600 0.8314 0.7879 0.7792
0.6975 26.86 1800 0.7667 0.7927 0.7939
0.9913 29.85 2000 0.9207 0.7734 0.7707
0.2307 32.83 2200 0.7651 0.8072 0.8086
0.1412 35.82 2400 0.7132 0.8352 0.8311
0.2141 38.8 2600 0.7551 0.8276 0.8262
0.2169 41.79 2800 0.7900 0.8148 0.8160
0.3942 44.77 3000 0.8621 0.8130 0.8042
0.2306 47.76 3200 0.6788 0.8264 0.8253
0.0975 50.74 3400 0.7236 0.8295 0.8289
0.0062 53.73 3600 0.6872 0.8286 0.8277
0.1781 56.71 3800 0.6990 0.8393 0.8390
0.0309 59.7 4000 0.6348 0.8496 0.8500
0.0026 62.68 4200 0.6737 0.8585 0.8566
0.0043 65.67 4400 0.7780 0.8416 0.8387
0.0032 68.65 4600 0.6899 0.8482 0.8461
0.0302 71.64 4800 0.6813 0.8515 0.8495
0.0027 74.62 5000 0.7163 0.8530 0.8529
0.1165 77.61 5200 0.6249 0.8603 0.8595
0.0021 80.59 5400 0.6747 0.8588 0.8578
0.2558 83.58 5600 0.7514 0.8581 0.8581
0.0162 86.57 5800 0.6782 0.8667 0.8664
0.1929 89.55 6000 0.6371 0.8615 0.8600
0.0621 92.54 6200 0.8079 0.8600 0.8607
0.0017 95.52 6400 0.7072 0.8678 0.8669
0.0008 98.51 6600 0.7323 0.8572 0.8541
0.1655 101.49 6800 0.6953 0.8521 0.8505
0.01 104.48 7000 0.7149 0.8665 0.8674
0.0135 107.46 7200 0.8990 0.8523 0.8488
0.0056 110.45 7400 0.7320 0.8673 0.8664
0.0023 113.43 7600 0.7108 0.8700 0.8705
0.0025 116.42 7800 0.6464 0.8818 0.8820
0.0003 119.4 8000 0.6985 0.8706 0.8713
0.0048 122.39 8200 0.6620 0.8765 0.8740
0.2335 125.37 8400 0.6515 0.8832 0.8828
0.0005 128.36 8600 0.6961 0.8776 0.8762
0.0003 131.34 8800 0.5990 0.8878 0.8882
0.0002 134.33 9000 0.6236 0.8887 0.8889
0.002 137.31 9200 0.6671 0.8847 0.8845
0.0002 140.3 9400 0.5970 0.8931 0.8935
0.0002 143.28 9600 0.6095 0.8906 0.8913
0.0002 146.27 9800 0.6056 0.8910 0.8913
0.0002 149.25 10000 0.5979 0.8918 0.8921

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1