File size: 1,455 Bytes
d0a0a0e b08980c d0a0a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
library_name: transformers
tags:
- robotics
- vla
- image-text-to-text
- multimodal
- pretraining
license: mit
language:
- en
pipeline_tag: image-text-to-text
---
# MiniVLA VQ 1B (Prismatic-Compatible Version)
<b>This checkpoint is in a format that is compatible with the training script from the original [Prismatic VLMs project codebase](https://github.com/TRI-ML/prismatic-vlms), which the OpenVLA
team built on top of to develop the OpenVLA model.</b>
This Prismatic-compatible checkpoint may be useful if you wish to <b>fully fine-tune</b> MiniVLA (all 1 billion parameters) via native PyTorch Fully
Sharded Data Parallel (FSDP) using the Prismatic VLMs training script. If you instead wish to do Parameter-Efficient Fine-Tuning via LoRA, you
can use the MiniVLA checkpoint linked above, which is compatible with the Hugging Face `transformers` library. We recommend fine-tuning via LoRA if
you do not have sufficient compute to fully fine-tune a 1B-parameter model (e.g., multiple A100/H100 GPUs).
## Usage Instructions
See the [MiniVLA GitHub README](https://github.com/Stanford-ILIAD/openvla-mini/blob/main/README.md) for instructions on how to use this checkpoint for full fine-tuning.
## Citation
**BibTeX:**
```bibtex
@article{belkhale24minivla,
title={MiniVLA: A Better VLA with a Smaller Footprint},
author={Suneel Belkhale and Dorsa Sadigh},
url={https://github.com/Stanford-ILIAD/openvla-mini}
year={2024}
}
``` |