|
--- |
|
license: apache-2.0 |
|
tags: |
|
- Solar Moe |
|
- Solar |
|
- Lumosia |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Lumosia-v2-MoE-4x10.7 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 70.39 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 87.87 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 66.45 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 68.48 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 84.21 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 65.13 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7 |
|
name: Open LLM Leaderboard |
|
--- |
|
# Lumosia-v2-MoE-4x10.7 |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/fKdOLTQNerr2fYYnWOiQD.png) |
|
|
|
The Lumosia Series upgraded with Lumosia V2. |
|
|
|
# What's New in Lumosia V2? |
|
|
|
Lumosia V2 takes the original vision of being an "all-rounder" and refines it with more nuanced capabilities. |
|
|
|
Topic/Prompt Based Approach: |
|
|
|
Diverging from the keyword-based approach of its counterpart, Umbra. |
|
|
|
Context and Coherence: |
|
|
|
With a base context of 8k scrolling window and the ability to maintain coherence up to 16k. |
|
|
|
Balanced and Versatile: |
|
|
|
The core ethos of Lumosia V2 is balance. It's designed to be your go-to assistant. |
|
|
|
Experimentation and User-Centric Development: |
|
|
|
Lumosia V2 remains an experimental model, a mosaic of the best-performing Solar models, (selected based on user experience). |
|
This version is a testament to the idea that innovation is a journey, not a destination. |
|
|
|
|
|
Template: |
|
``` |
|
### System: |
|
|
|
### USER:{prompt} |
|
|
|
### Assistant: |
|
``` |
|
|
|
|
|
Settings: |
|
``` |
|
Temp: 1.0 |
|
min-p: 0.02-0.1 |
|
``` |
|
|
|
## Evals: |
|
|
|
* Avg: |
|
* ARC: |
|
* HellaSwag: |
|
* MMLU: |
|
* T-QA: |
|
* Winogrande: |
|
* GSM8K: |
|
|
|
## Examples: |
|
``` |
|
Example 1: |
|
|
|
User: |
|
|
|
Lumosia: |
|
|
|
``` |
|
``` |
|
Example 2: |
|
|
|
User: |
|
|
|
Lumosia: |
|
|
|
``` |
|
|
|
## 🧩 Configuration |
|
|
|
``` |
|
yaml |
|
base_model: DopeorNope/SOLARC-M-10.7B |
|
gate_mode: hidden |
|
dtype: bfloat16 |
|
|
|
experts: |
|
- source_model: DopeorNope/SOLARC-M-10.7B |
|
positive_prompts: |
|
|
|
negative_prompts: |
|
|
|
- source_model: Sao10K/Fimbulvetr-10.7B-v1 [Updated] |
|
positive_prompts: |
|
|
|
negative_prompts: |
|
|
|
- source_model: jeonsworld/CarbonVillain-en-10.7B-v4 [Updated] |
|
positive_prompts: |
|
|
|
negative_prompts: |
|
|
|
- source_model: kyujinpy/Sakura-SOLAR-Instruct |
|
positive_prompts: |
|
|
|
negative_prompts: |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
``` |
|
python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Steelskull/Lumosia-v2-MoE-4x10.7" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Lumosia-v2-MoE-4x10.7) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |73.75| |
|
|AI2 Reasoning Challenge (25-Shot)|70.39| |
|
|HellaSwag (10-Shot) |87.87| |
|
|MMLU (5-Shot) |66.45| |
|
|TruthfulQA (0-shot) |68.48| |
|
|Winogrande (5-shot) |84.21| |
|
|GSM8k (5-shot) |65.13| |
|
|
|
|