Steelskull's picture
Update README.md
f296d67 verified
|
raw
history blame
6.96 kB
metadata
license: apache-2.0
tags:
  - moe
  - merge
  - mergekit
  - Solar Moe
  - Solar
  - Umbra
model-index:
  - name: Umbra-v2.1-MoE-4x10.7
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.11
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.57
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.48
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 66.57
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 68.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Umbra-v2.1-MoE-4x10.7
          name: Open LLM Leaderboard

image/png

Umbra-v2.1-MoE-4x10.7

The [Umbra Series] is an offshoot of the [Lumosia Series] With the goal to be a General assistant that has a knack for story telling and RP/ERP

-What's New in v2.1?

Umbra v2.1 isn't just a simple update; it's like giving the model a double shot of espresso. Ive changed the models and prompts, in an attempt to make Umbra not only your go-to assistant for general knowledge but also a great storyteller and RP/ERP companion.

-Longer Positive, Shorter Negative

In an effort to trick the gates into being less uptight, Ive added more positive prompts and snappier negative ones. These changes are based on the model's strengths and, frankly, my whimsical preferences.

-Experimental, As Always

Remember, folks, "v2.1" doesn't mean it's superior to its predecessors – it's just another step in the quest. It's the 'Empire Strikes Back' of our series – could be better, could be worse, but definitely more dramatic.

-Base Context and Coherence

Umbra v2.1 has a base context of 8k scrolling window.

-The Tavern Card

Just for fun - the Umbra Personality Tavern Card. It's your gateway to immersive storytelling experiences, a little like having a 'Choose Your Own Adventure' book, but way cooler because it's digital and doesn't get lost under your bed.

-Token Error? Fixed!

Umbra-v2 had a tokenizer error but was removed faster than you can say "Cops love Donuts"

So, give Umbra v2.1 a whirl and let me know how it goes. Your feedback is like the secret sauce in my development burger.

### System:

### USER:{prompt}

### Assistant:

Settings:

Temp: 1.0
min-p: 0.02-0.1

Evals:

  • Avg: 73.59
  • ARC: 69.11
  • HellaSwag: 87.57
  • MMLU: 66.48
  • T-QA: 66.75
  • Winogrande: 83.11
  • GSM8K: 68.69

Examples:

posted soon
posted soon

🧩 Configuration

base_model: vicgalle/CarbonBeagle-11B
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: vicgalle/CarbonBeagle-11B
    positive_prompts: [Revamped]

  - source_model: Sao10K/Fimbulvetr-10.7B-v1
    positive_prompts: [Revamped]

  - source_model: bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED
    positive_prompts: [Revamped]

  - source_model: Yhyu13/LMCocktail-10.7B-v1
    positive_prompts: [Revamed]
Umbra-v2-MoE-4x10.7 is a Mixure of Experts (MoE) made with the following models:
* [vicgalle/CarbonBeagle-11B](https://huggingface.co/vicgalle/CarbonBeagle-11B)
* [Sao10K/Fimbulvetr-10.7B-v1](https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1)
* [bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED](https://huggingface.co/bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED)
* [Yhyu13/LMCocktail-10.7B-v1](https://huggingface.co/Yhyu13/LMCocktail-10.7B-v1)

💻 Usage

!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch

model = "Steelskull/Umbra-v2-MoE-4x10.7"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.59
AI2 Reasoning Challenge (25-Shot) 69.11
HellaSwag (10-Shot) 87.57
MMLU (5-Shot) 66.48
TruthfulQA (0-shot) 66.57
Winogrande (5-shot) 83.11
GSM8k (5-shot) 68.69