|
--- |
|
language: |
|
- en |
|
- fr |
|
- ln |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: CohereForAI/aya-23-8b |
|
datasets: |
|
- masakhane/afrimmlu |
|
model-index: |
|
- name: aya-23-8b-afrimmlu-lin |
|
results: [] |
|
pipeline_tag: text-generation |
|
license: apache-2.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Aya-23-8b Afrimmlu Lingala |
|
|
|
This model is a fine-tuned version of [CohereForAI/aya-23-8b](https://huggingface.co/CohereForAI/aya-23-8b) on [Masakhane/afrimmlu](https://huggingface.co/datasets/masakhane/afrimmlu/). |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
### NVIDIA |
|
- 2 x A100 PCIe |
|
- 24 vCPU 251 GB RAM |
|
|
|
## Training procedure |
|
|
|
## Prompt Formating |
|
```py |
|
def formatting_prompts_func(example): |
|
output_texts = [] |
|
for i in range(len(example['choices'])): |
|
text = f"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Question : {example['question'][i]}, Choices : {example['choices'][i]}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{example['answer'][i]}" |
|
output_texts.append(text) |
|
return output_texts |
|
``` |
|
|
|
## Model Architecture |
|
|
|
```txt |
|
PeftModelForCausalLM( |
|
(base_model): LoraModel( |
|
(model): CohereForCausalLM( |
|
(model): CohereModel( |
|
(embed_tokens): Embedding(256000, 4096, padding_idx=0) |
|
(layers): ModuleList( |
|
(0-31): 32 x CohereDecoderLayer( |
|
(self_attn): CohereAttention( |
|
(q_proj): lora.Linear4bit( |
|
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False) |
|
(lora_dropout): ModuleDict( |
|
(default): Identity() |
|
) |
|
(lora_A): ModuleDict( |
|
(default): Linear(in_features=4096, out_features=32, bias=False) |
|
) |
|
(lora_B): ModuleDict( |
|
(default): Linear(in_features=32, out_features=4096, bias=False) |
|
) |
|
(lora_embedding_A): ParameterDict() |
|
(lora_embedding_B): ParameterDict() |
|
) |
|
(k_proj): lora.Linear4bit( |
|
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False) |
|
(lora_dropout): ModuleDict( |
|
(default): Identity() |
|
) |
|
(lora_A): ModuleDict( |
|
(default): Linear(in_features=4096, out_features=32, bias=False) |
|
) |
|
(lora_B): ModuleDict( |
|
(default): Linear(in_features=32, out_features=1024, bias=False) |
|
) |
|
(lora_embedding_A): ParameterDict() |
|
(lora_embedding_B): ParameterDict() |
|
) |
|
(v_proj): lora.Linear4bit( |
|
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False) |
|
(lora_dropout): ModuleDict( |
|
(default): Identity() |
|
) |
|
(lora_A): ModuleDict( |
|
(default): Linear(in_features=4096, out_features=32, bias=False) |
|
) |
|
(lora_B): ModuleDict( |
|
(default): Linear(in_features=32, out_features=1024, bias=False) |
|
) |
|
(lora_embedding_A): ParameterDict() |
|
(lora_embedding_B): ParameterDict() |
|
) |
|
(o_proj): lora.Linear4bit( |
|
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False) |
|
(lora_dropout): ModuleDict( |
|
(default): Identity() |
|
) |
|
(lora_A): ModuleDict( |
|
(default): Linear(in_features=4096, out_features=32, bias=False) |
|
) |
|
(lora_B): ModuleDict( |
|
(default): Linear(in_features=32, out_features=4096, bias=False) |
|
) |
|
(lora_embedding_A): ParameterDict() |
|
(lora_embedding_B): ParameterDict() |
|
) |
|
(rotary_emb): CohereRotaryEmbedding() |
|
) |
|
(mlp): CohereMLP( |
|
(gate_proj): Linear4bit(in_features=4096, out_features=14336, bias=False) |
|
(up_proj): Linear4bit(in_features=4096, out_features=14336, bias=False) |
|
(down_proj): Linear4bit(in_features=14336, out_features=4096, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(input_layernorm): CohereLayerNorm() |
|
) |
|
) |
|
(norm): CohereLayerNorm() |
|
) |
|
(lm_head): Linear(in_features=4096, out_features=256000, bias=False) |
|
) |
|
) |
|
) |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
|
|
## Inferennce |
|
|
|
```py |
|
quantization_config = None |
|
if QUANTIZE_4BIT: |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
|
|
attn_implementation = None |
|
if USE_FLASH_ATTENTION: |
|
attn_implementation="flash_attention_2" |
|
|
|
loaded_model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL_NAME, |
|
quantization_config=quantization_config, |
|
attn_implementation=attn_implementation, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME) |
|
loaded_model.load_adapter("aya-23-8b-afrimmlu-lin") |
|
|
|
|
|
prompts = [ |
|
"""Question: 4 na 3 Ezali boni ? |
|
Choices : [12, 4, 32, 21] |
|
""" |
|
] |
|
|
|
generations = generate_aya_23(prompts, loaded_model) |
|
|
|
for p, g in zip(prompts, generations): |
|
print( |
|
"PROMPT", p ,"RESPONSE", g, "\n", sep="\n" |
|
) |
|
``` |
|
|
|
```txt |
|
PROMPT |
|
Question: 4 na 3 Ezali boni ? |
|
Choices : [12, 4, 32, 21] |
|
|
|
RESPONSE |
|
Boni ya 4 ezali 12. |
|
|
|
``` |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |