File size: 42,125 Bytes
155f33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad076ec
 
155f33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f722c7
155f33d
 
 
 
 
 
 
 
 
 
3f722c7
 
 
155f33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f722c7
 
 
155f33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
"""

ESM++ model implementation.



ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility

The ESM Python package is not required



Modified from https://github.com/evolutionaryscale/esm

License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement

"""

import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from functools import cache, partial
from pathlib import Path
from typing import Optional, Tuple, Union
from einops import rearrange, repeat
from huggingface_hub import snapshot_download
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.processors import TemplateProcessing
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
from transformers.modeling_outputs import ModelOutput


class ESMplusplusConfig(PretrainedConfig):
    """Configuration class for ESM++ model.

    

    Args:

        vocab_size: Size of the vocabulary

        hidden_size: Dimension of hidden layers

        num_attention_heads: Number of attention heads

        num_hidden_layers: Number of transformer layers

        num_labels: Number of output labels for classification

        problem_type: Type of problem - regression, single/multi label classification

    """
    model_type = "ESMplusplus"
    def __init__(

        self,

        vocab_size: int = 64,

        hidden_size: int = 960,

        num_attention_heads: int = 15,

        num_hidden_layers: int = 30,

        num_labels: int = 2,

        problem_type: str | None = None,

        dropout: float = 0.0,

        initializer_range: float = 0.02,

        **kwargs,

    ):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_hidden_layers = num_hidden_layers
        self.num_labels = num_labels
        self.problem_type = problem_type
        self.dropout = dropout
        self.initializer_range = initializer_range


### Rotary Embeddings
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
    """Rotates half the hidden dims of the input."""
    if not interleaved:
        x1, x2 = x.chunk(2, dim=-1)
        return torch.cat((-x2, x1), dim=-1)
    else:
        x1, x2 = x[..., ::2], x[..., 1::2]
        return rearrange(
            torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
        )


def apply_rotary_emb_torch(

    x: torch.Tensor,

    cos: torch.Tensor,

    sin: torch.Tensor,

    interleaved: bool = False,

    _inplace: bool = False,

) -> torch.Tensor:
    """Apply rotary embeddings to input based on cos and sin."""
    ro_dim = cos.shape[-1] * 2
    assert ro_dim <= x.shape[-1]
    seqlen = x.size(1)
    cos = cos[:seqlen]
    sin = sin[:seqlen]
    cos = repeat(cos, "s d -> s 1 (2 d)")
    sin = repeat(sin, "s d -> s 1 (2 d)")
    return torch.cat(
        [
            x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
            x[..., ro_dim:],
        ],
        dim=-1,
    )


class RotaryEmbedding(torch.nn.Module):
    """Rotary position embeddings.

    

    Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"

    

    Args:

        dim: Dimension of the embedding

        base: Base for computing angular frequencies

        interleaved: Whether to use interleaved rotations

        scale_base: Base for scaling

        scaling_factor: Factor for scaling positions

        pos_idx_in_fp32: Whether to compute position indices in fp32

        device: Computation device

    """
    def __init__(

        self,

        dim: int,

        base: float = 10000.0,

        interleaved: bool = False,

        scale_base: Optional[float] = None,

        scaling_factor: float = 1.0,

        pos_idx_in_fp32: bool = True,

        device: Optional[torch.device] = None,

    ):
        super().__init__()
        self.dim = dim
        self.base = float(base)
        self.pos_idx_in_fp32 = pos_idx_in_fp32
        self.interleaved = interleaved
        self.scale_base = scale_base
        self.scaling_factor = scaling_factor
        self.device = device

        self._seq_len_cached = 0
        self._cos_cached = None
        self._sin_cached = None
        self._cos_k_cached = None
        self._sin_k_cached = None
        self.reset_parameters()

    def reset_parameters(self):
        """Reset the parameters of the embedding."""
        inv_freq = self._compute_inv_freq(self.device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
        scale = (
            (arange + 0.4 * self.dim) / (1.4 * self.dim)
            if self.scale_base is not None
            else None
        )
        self.register_buffer("scale", scale)

    def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
        """Compute inverse frequency bands."""
        return 1 / (
            self.base
            ** (
                torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
                / self.dim
            )
        )

    def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
        """Update the cached cosine and sine values."""
        if (
            seqlen > self._seq_len_cached
            or self._cos_cached is None
            or self._cos_cached.device != device
            or self._cos_cached.dtype != dtype
            or (self.training and self._cos_cached.is_inference())
        ):
            self._seq_len_cached = seqlen
            if self.pos_idx_in_fp32:
                t = torch.arange(seqlen, device=device, dtype=torch.float32)
                t /= self.scaling_factor
                if self.inv_freq.dtype != torch.float32:
                    inv_freq = self.inv_freq.to(torch.float32)
                else:
                    inv_freq = self.inv_freq
            else:
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                t /= self.scaling_factor
                inv_freq = self.inv_freq
            freqs = torch.outer(t, inv_freq)

            if self.scale is None:
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)
            else:
                power = (
                    torch.arange(
                        seqlen, dtype=self.scale.dtype, device=self.scale.device
                    )
                    - seqlen // 2
                ) / self.scale_base
                scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
                self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
                self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
                self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)

    def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Apply rotary embeddings to queries and keys.

        

        Args:

            q: Query tensor of shape (batch, seqlen, nheads, headdim)

            k: Key tensor of shape (batch, seqlen, nheads, headdim)

            

        Returns:

            Tuple of rotated query and key tensors

        """
        self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
        assert self._cos_cached is not None
        assert self._sin_cached is not None
        if self.scale is None:
            return (
                apply_rotary_emb_torch(
                    q,
                    self._cos_cached,
                    self._sin_cached,
                    self.interleaved,
                    True,  # inplace=True
                ),
                apply_rotary_emb_torch(
                    k,
                    self._cos_cached,
                    self._sin_cached,
                    self.interleaved,
                    True,  # inplace=True
                ),
            )  # type: ignore
        else:
            assert False


### Feedforward Network Components
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
    """Compute corrected dimension for SwiGLU."""
    return int(((expansion_ratio * d_model) + 255) // 256 * 256)


class SwiGLU(nn.Module):
    """SwiGLU activation function."""
    def __init__(self):
        super(SwiGLU, self).__init__()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x1, x2 = x.chunk(2, dim=-1)
        return F.silu(x1) * x2


def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
    """Create SwiGLU feedforward network with layer normalization."""
    return nn.Sequential(
        nn.LayerNorm(d_model),
        nn.Linear(
            d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
        ),
        SwiGLU(),
        nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
    )


### Attention
class MultiHeadAttention(nn.Module):
    """Multi-head attention with rotary embeddings.

    

    Args:

        d_model: Model dimension

        n_heads: Number of attention heads

    """
    def __init__(self, d_model: int, n_heads: int):
        super().__init__()
        self.d_model = d_model
        self.n_heads = n_heads
        self.d_head = self.d_model // self.n_heads
        self.layernorm_qkv = nn.Sequential(
            nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
        )
        self.out_proj = nn.Linear(d_model, d_model, bias=False)
        self.q_ln = nn.LayerNorm(d_model, bias=False)
        self.k_ln = nn.LayerNorm(d_model, bias=False)
        self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
        self.rotary = RotaryEmbedding(d_model // n_heads)

    def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Apply rotary embeddings to query and key."""
        q = q.unflatten(-1, (self.n_heads, self.d_head))
        k = k.unflatten(-1, (self.n_heads, self.d_head))
        q, k = self.rotary(q, k)
        q = q.flatten(-2, -1)
        k = k.flatten(-2, -1)
        return q, k

    def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """

        Args:

            x: Input tensor

            attention_mask: Optional attention mask

            output_attentions: Whether to return attention weights

            

        Returns:

            Output tensor after self attention, and optionally attention weights

        """
        attn_weights = None
        qkv_BLD3 = self.layernorm_qkv(x)
        query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
        query_BLD, key_BLD = (
            self.q_ln(query_BLD).to(query_BLD.dtype),
            self.k_ln(key_BLD).to(query_BLD.dtype),
        )
        query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
        query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))

        if output_attentions: # Manual attention computation
            L, S = query_BLD.size(-2), key_BLD.size(-2)
            scale = 1 / math.sqrt(query_BLD.size(-1))
            attn_bias = torch.zeros(L, S, dtype=query_BLD.dtype, device=query_BLD.device)
            if attention_mask is not None:
                if attention_mask.dtype == torch.bool:
                    attention_mask.masked_fill_(attention_mask.logical_not(), float('-inf'))
                else:
                    attn_bias += attention_mask
    
            attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale
            attn_weights += attn_bias
            attn_weights = F.softmax(attn_weights, dim=-1)
            context_BHLD = torch.matmul(attn_weights, value_BHLD)
        else:
            context_BHLD = F.scaled_dot_product_attention(
                query_BHLD, key_BHLD, value_BHLD, attention_mask
            )
            
        context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
        output = self.out_proj(context_BLD)
        return output, attn_weights


### Regression Head
def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module:
    """Create a regression head with optional hidden dimension.

    

    Args:

        d_model: Input dimension

        output_dim: Output dimension

        hidden_dim: Optional hidden dimension (defaults to d_model)

    """
    hidden_dim = hidden_dim if hidden_dim is not None else d_model
    return nn.Sequential(
        nn.Linear(d_model, hidden_dim),
        nn.GELU(),
        nn.LayerNorm(hidden_dim),
        nn.Linear(hidden_dim, output_dim),
    )


### Transformer Block
class UnifiedTransformerBlock(nn.Module):
    """Transformer block with attention and feedforward layers.

    

    Args:

        d_model: Model dimension

        n_heads: Number of attention heads

        residue_scaling_factor: Factor for scaling residual connections

        expansion_ratio: Expansion ratio for feedforward network

    """
    def __init__(

        self,

        d_model: int,

        n_heads: int,

        residue_scaling_factor: float = 1,

        expansion_ratio: float = 8 / 3,

        dropout: float = 0.0,

    ):
        super().__init__()
        self.attn = MultiHeadAttention(d_model, n_heads)
        self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
        self.scaling_factor = residue_scaling_factor
        self.dropout = nn.Dropout(dropout)

    def forward(

        self,

        x: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_attentions: bool = False,

    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """

        Args:

            x: Input tensor

            attention_mask: Optional attention mask

            output_attentions: Whether to return attention weights

            

        Returns:

            Output tensor after transformer block, and optionally attention weights

        """
        attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
        x = x + self.dropout(attn_output) / self.scaling_factor
        x = x + self.dropout(self.ffn(x)) / self.scaling_factor
        return x, attn_weights


### Model Outputs
@dataclass
class TransformerOutput(ModelOutput):
    """Output type for transformer encoder."""
    last_hidden_state: Optional[torch.Tensor] = None
    hidden_states: Optional[Tuple[torch.Tensor]] = None
    attentions: Optional[Tuple[torch.Tensor]] = None


@dataclass
class ESMplusplusOutput(ModelOutput):
    """Output type for ESM++ models."""
    loss: Optional[torch.Tensor] = None
    logits: Optional[torch.Tensor] = None
    last_hidden_state: Optional[torch.Tensor] = None
    hidden_states: Optional[Tuple[torch.Tensor]] = None
    attentions: Optional[Tuple[torch.Tensor]] = None


### Transformer Stack
class TransformerStack(nn.Module):
    """Stack of transformer blocks.

    

    Args:

        d_model: Model dimension

        n_heads: Number of attention heads

        n_layers: Number of transformer layers

        dropout: Dropout rate

    """
    def __init__(

        self,

        d_model: int,

        n_heads: int,

        n_layers: int,

        dropout: float = 0.0,

    ):
        super().__init__()
        self.blocks = nn.ModuleList(
            [
                UnifiedTransformerBlock(
                    d_model,
                    n_heads,
                    residue_scaling_factor=math.sqrt(n_layers / 36),
                    dropout=dropout,
                )
                for i in range(n_layers)
            ]
        )
        self.norm = nn.LayerNorm(d_model, bias=False)
        self.gradient_checkpointing = False

    def forward(

        self,

        x: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        output_hidden_states: bool = False,

        output_attentions: bool = False,

    ) -> TransformerOutput:
        """

        Args:

            x: Input tensor

            attention_mask: Optional attention mask

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            TransformerOutput containing last hidden state and optionally all hidden states and attention weights

        """
        batch_size, seq_len, _ = x.shape
        hidden_states = () if output_hidden_states else None
        attentions = () if output_attentions else None
        
        if attention_mask is not None:
            attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
            
        for block in self.blocks:
            if self.gradient_checkpointing and self.training:
                x, attn_weights = self._gradient_checkpointing_func(
                    block.__call__,
                    x,
                    attention_mask,
                    output_attentions,
                )
            else:
                x, attn_weights = block(x, attention_mask, output_attentions)

            if attentions is not None:
                attentions += (attn_weights,)
                
            if output_hidden_states:
                assert hidden_states is not None
                hidden_states += (x,)
                
        return TransformerOutput(
            last_hidden_state=self.norm(x), 
            hidden_states=hidden_states,
            attentions=attentions
        )


### Dataset for Embedding
class ProteinDataset(Dataset):
    """Simple dataset for protein sequences."""
    def __init__(self, sequences: list[str]):
        self.sequences = sequences

    def __len__(self) -> int:
        return len(self.sequences)

    def __getitem__(self, idx: int) -> str:
        return self.sequences[idx]


class PreTrainedESMplusplusModel(PreTrainedModel):
    """

    init weights for ESM++ models

    """
    config_class = ESMplusplusConfig
    base_model_prefix = "esm++"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            if module.bias is not None:
                module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    @classmethod
    def from_pretrained_esm(cls, model_name: str):
        """Load a pretrained ESM++ model."""
        if '300' in model_name:
            return ESMplusplus_300M()
        elif '600' in model_name:
            return ESMplusplus_600M()
        else:
            raise ValueError(f"Invalid model name: {model_name}")

    @property
    def device(self) -> torch.device:
        """Get the device of the model."""
        return next(self.parameters()).device

    def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """Apply mean pooling to sequence outputs."""
        if attention_mask is None:
            return x.mean(dim=1)
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
        
    def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """Apply max pooling to sequence outputs."""
        if attention_mask is None:
            return x.max(dim=1).values
        else:
            attention_mask = attention_mask.unsqueeze(-1)
            return (x * attention_mask).max(dim=1).values

    def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """Apply cls pooling to sequence outputs."""
        return x[:, 0, :]

    def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
        """Collate function for batching sequences."""
        return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)

    def _read_sequences_from_db(self, db_path: str) -> set[str]:
        """Read sequences from SQLite database."""
        import sqlite3
        sequences = []
        with sqlite3.connect(db_path) as conn:
            c = conn.cursor()
            c.execute("SELECT sequence FROM embeddings")
            while True:
                row = c.fetchone()
                if row is None:
                    break
                sequences.append(row[0])
        return set(sequences)

    def embed_dataset(

        self,

        sequences: list[str],

        batch_size: int = 2,

        max_len: int = 512,

        full_embeddings: bool = False,

        full_precision: bool = False,

        pooling_type: str = 'mean',

        num_workers: int = 0,

        sql: bool = False,

        sql_db_path: str = 'embeddings.db',

    ) -> Optional[dict[str, torch.Tensor]]:
        """Embed a dataset of protein sequences.

        

        Args:

            sequences: List of protein sequences

            batch_size: Batch size for processing

            max_len: Maximum sequence length

            full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)

            full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage

            pooling_type: Type of pooling ('mean' or 'cls')

            num_workers: Number of workers for data loading, 0 for the main process

            sql: Whether to store embeddings in SQLite database - will be stored in float32

            sql_db_path: Path to SQLite database

            

        Returns:

            Dictionary mapping sequences to embeddings, or None if sql=True

        """
        sequences = list(set([seq[:max_len] for seq in sequences]))
        device = self.device

        def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
            if full_embeddings:
                return residue_embeddings
            elif pooling_type == 'mean':
                return self.mean_pooling(residue_embeddings, attention_mask)
            elif pooling_type == 'max':
                return self.max_pooling(residue_embeddings, attention_mask)
            elif pooling_type == 'cls':
                return self.cls_pooling(residue_embeddings, attention_mask)
            else:
                raise ValueError(f"Invalid pooling type: {pooling_type}")

        sequences = list(set([seq[:max_len] for seq in sequences]))
        if sql:
            import sqlite3
            conn = sqlite3.connect(sql_db_path)
            c = conn.cursor()
            c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
            already_embedded = self._read_sequences_from_db(sql_db_path)
            to_embed = [seq for seq in sequences if seq not in already_embedded]
            print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
            print(f"Embedding {len(to_embed)} new sequences")
            if len(to_embed) > 0:
                to_embed = sorted(to_embed, key=len, reverse=True)
                dataset = ProteinDataset(to_embed)
                dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn, shuffle=False)
                with torch.no_grad():
                    for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
                        seqs = to_embed[i * batch_size:(i + 1) * batch_size]
                        input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
                        x = self.embed(input_ids)
                        residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
                        embeddings = get_embeddings(residue_embeddings, attention_mask)

                        for seq, emb, mask in zip(seqs, embeddings, attention_mask):
                            if full_embeddings:
                                emb = emb[mask.bool()]
                            c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)", 
                                    (seq, emb.cpu().numpy().tobytes()))
                        
                        if (i + 1) % 100 == 0:
                            conn.commit()
            
                conn.commit()
            conn.close()
            return None

        embeddings_dict = {}
        sequences = sorted(sequences, key=len, reverse=True)
        dataset = ProteinDataset(sequences)
        dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn, shuffle=False)
        with torch.no_grad():
            for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
                seqs = sequences[i * batch_size:(i + 1) * batch_size]
                input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
                x = self.embed(input_ids)
                residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
                if full_precision:
                    residue_embeddings = residue_embeddings.float()
                embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
                for seq, emb in zip(seqs, embeddings):
                    embeddings_dict[seq] = emb
                    
        return embeddings_dict


### ESM++ Models
class ESMplusplusModel(PreTrainedESMplusplusModel):
    """

    ESM++ model. transformer model with no heads

    """
    config_class = ESMplusplusConfig
    def __init__(self, config: ESMplusplusConfig, **kwargs):
        super().__init__(config, **kwargs)
        self.config = config
        self.vocab_size = config.vocab_size
        self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
        self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
        self.tokenizer = EsmSequenceTokenizer()
        self.init_weights()

    def get_input_embeddings(self):
        return self.embed

    def set_input_embeddings(self, value):
        self.embed = value

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None, # to play nice with HF adjacent packages

    ) -> TransformerOutput:
        """Forward pass for masked language modeling.

        

        Args:

            input_ids: Input token IDs

            attention_mask: Attention mask

            inputs_embeds: Optional precomputed embeddings

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            TransformerOutput containing last hidden state and optionally all hidden states and attention weights

        """
        if inputs_embeds is None:
            x = self.embed(input_ids)
        else:
            x = inputs_embeds
        return self.transformer(x, attention_mask, output_hidden_states, output_attentions)
        

class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel):
    """

    ESM++ model for masked language modeling.

    Implements the base ESM++ architecture with a masked language modeling head.

    """
    config_class = ESMplusplusConfig
    def __init__(self, config: ESMplusplusConfig, **kwargs):
        super().__init__(config, **kwargs)
        self.config = config
        self.vocab_size = config.vocab_size
        self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
        self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
        self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
        self.ce_loss = nn.CrossEntropyLoss()
        self.tokenizer = EsmSequenceTokenizer()
        self.init_weights()

    def get_input_embeddings(self):
        return self.embed

    def set_input_embeddings(self, value):
        self.embed = value

    def get_output_embeddings(self):
        return self.sequence_head[-1]

    def set_output_embeddings(self, new_embeddings):
        self.sequence_head[-1] = new_embeddings

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None, # to play nice with HF adjacent packages

    ) -> ESMplusplusOutput:
        """Forward pass for masked language modeling.

        

        Args:

            input_ids: Input token IDs

            attention_mask: Attention mask

            inputs_embeds: Optional precomputed embeddings

            labels: Optional labels for masked tokens

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            ESMplusplusOutput containing loss, logits, hidden states and attention weights

        """
        if inputs_embeds is None:
            x = self.embed(input_ids)
        else:
            x = inputs_embeds
        output = self.transformer(x, attention_mask, output_hidden_states, output_attentions)
        x = output.last_hidden_state
        logits = self.sequence_head(x)
        loss = None
        if labels is not None:
            loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
        return ESMplusplusOutput(
            loss=loss,
            logits=logits,
            last_hidden_state=x,
            hidden_states=output.hidden_states,
            attentions=output.attentions,
        )


class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
    """

    ESM++ model for sequence classification.

    Extends the base ESM++ model with a classification head.

    """
    def __init__(self, config: ESMplusplusConfig, **kwargs):
        super().__init__(config, **kwargs)
        self.config = config
        self.num_labels = config.num_labels
        self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
        # Large intermediate projections help with sequence classification tasks (*4)
        self.mse = nn.MSELoss()
        self.ce = nn.CrossEntropyLoss()
        self.bce = nn.BCEWithLogitsLoss()
        self.init_weights()

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None, # to play nice with HF adjacent packages

    ) -> ESMplusplusOutput:
        """Forward pass for sequence classification.

        

        Args:

            input_ids: Input token IDs

            attention_mask: Attention mask

            inputs_embeds: Optional precomputed embeddings

            labels: Optional labels for classification

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            ESMplusplusOutput containing loss, logits, and hidden states

        """
        output = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            labels=None,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states
        )
        x = output.last_hidden_state
        cls_features = x[:, 0, :]
        mean_features = self.mean_pooling(x, attention_mask)
        # we include mean pooling features to help with early convergence, the cost of this is basically zero
        features = torch.cat([cls_features, mean_features], dim=-1)
        logits = self.classifier(features)
        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                if self.num_labels == 1:
                    loss = self.mse(logits.flatten(), labels.flatten())
                else:
                    loss = self.mse(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss = self.bce(logits, labels)
        return ESMplusplusOutput(
            loss=loss,
            logits=logits,
            last_hidden_state=x,
            hidden_states=output.hidden_states,
        )


class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
    """

    ESM++ model for token classification.

    Extends the base ESM++ model with a token classification head.

    """
    def __init__(self, config: ESMplusplusConfig):
        super().__init__(config)
        self.config = config
        self.num_labels = config.num_labels
        self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
        # Large intermediate projections help with sequence classification tasks (*4)
        self.loss_fct = nn.CrossEntropyLoss()
        self.init_weights()

    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None, # to play nice with HF adjacent packages

    ) -> ESMplusplusOutput:
        """Forward pass for token classification.

        

        Args:

            input_ids: Input token IDs

            attention_mask: Attention mask

            inputs_embeds: Optional precomputed embeddings

            labels: Optional labels for token classification

            output_hidden_states: Whether to return all hidden states

            output_attentions: Whether to return attention weights

            

        Returns:

            ESMplusplusOutput containing loss, logits, and hidden states

        """
        output = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            labels=None,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states
        )
        x = output.last_hidden_state
        logits = self.classifier(x)
        loss = None
        if labels is not None:
            loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
        return ESMplusplusOutput(
            loss=loss,
            logits=logits,
            last_hidden_state=x,
            hidden_states=output.hidden_states,
        )


### Loading from EvolutionaryScale
@staticmethod
@cache
def data_root(model: str):
    if "INFRA_PROVIDER" in os.environ:
        return Path("")
    # Try to download from hugginface if it doesn't exist
    if model.startswith("esmc-300"):
        path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
    elif model.startswith("esmc-600"):
        path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
    else:
        raise ValueError(f"{model=} is an invalid model name.")
    return path


def ESMplusplus_300M(device: torch.device | str = "cpu"):
    with torch.device(device):
        config = ESMplusplusConfig(
            hidden_size=960,
            num_attention_heads=15,
            num_hidden_layers=30,
        )
        model = ESMplusplusForMaskedLM(config)
    state_dict = torch.load(
        data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
        map_location=device,
    )
    model.load_state_dict(state_dict)
    return model


def ESMplusplus_600M(device: torch.device | str = "cpu"):
    with torch.device(device):
        config = ESMplusplusConfig(
            hidden_size=1152,
            num_attention_heads=18,
            num_hidden_layers=36,
        )
        model = ESMplusplusForMaskedLM(config)
    state_dict = torch.load(
        data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
        map_location=device,
    )
    model.load_state_dict(state_dict)
    return model


### Tokenization
SEQUENCE_VOCAB = [
    "<cls>", "<pad>", "<eos>", "<unk>",
    "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
    "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
    "O", ".", "-", "|",
    "<mask>",
]

class EsmSequenceTokenizer(PreTrainedTokenizerFast):
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(

        self,

        unk_token="<unk>",

        cls_token="<cls>",

        pad_token="<pad>",

        mask_token="<mask>",

        eos_token="<eos>",

        chain_break_token="|",

        **kwargs,

    ):
        all_tokens = SEQUENCE_VOCAB
        token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}

        # a character-level tokenizer is the same as BPE with no token merges
        bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
        tokenizer = Tokenizer(bpe)
        special_tokens = [
            cls_token,
            pad_token,
            mask_token,
            eos_token,
            chain_break_token,
        ]
        self.cb_token = chain_break_token
        additional_special_tokens = [chain_break_token]

        tokenizer.add_special_tokens(special_tokens)

        # This is where we configure the automatic addition of special tokens when we call
        # tokenizer(text, add_special_tokens=True). Note that you can also configure how two
        # sequences are merged if you want.
        tokenizer.post_processor = TemplateProcessing(  # type: ignore
            single="<cls> $A <eos>",
            special_tokens=[
                ("<cls>", tokenizer.token_to_id("<cls>")),
                ("<eos>", tokenizer.token_to_id("<eos>")),
            ],
        )
        super().__init__(
            tokenizer_object=tokenizer,
            unk_token=unk_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            eos_token=eos_token,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )

    # These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
    @property
    def bos_token(self):
        return self.cls_token

    @property
    def bos_token_id(self):
        return self.cls_token_id

    @property
    def chain_break_token(self):
        return self.cb_token

    @property
    def chain_break_token_id(self):
        return self.convert_tokens_to_ids(self.chain_break_token)

    @property
    def all_token_ids(self):
        return list(range(self.vocab_size))

    @property
    def special_token_ids(self):
        return self.all_special_ids