metadata
library_name: transformers
tags:
- mergekit
- merge
- llama-3.1
- roleplay
- function calling
base_model:
- arcee-ai/Llama-3.1-SuperNova-Lite
- akjindal53244/Llama-3.1-Storm-8B
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
- unsloth/Meta-Llama-3.1-8B-Instruct
model-index:
- name: ZEUS-8B-V2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.29
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.61
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 21.15
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.94
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.24
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/ZEUS-8B-V2
name: Open LLM Leaderboard
new_version: T145/ZEUS-8B-V17
ZEUS 8B 🌩️ V2
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the DARE TIES merge method using unsloth/Meta-Llama-3.1-8B-Instruct as a base.
Models Merged
The following models were included in the merge:
- arcee-ai/Llama-3.1-SuperNova-Lite
- akjindal53244/Llama-3.1-Storm-8B
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
Configuration
The following YAML configuration was used to produce this model:
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
int8_mask: 1.0
slices:
- sources:
- layer_range: [0, 32]
model: akjindal53244/Llama-3.1-Storm-8B
parameters:
density: 0.8
weight: 0.25
- layer_range: [0, 32]
model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
density: 0.8
weight: 0.33
- layer_range: [0, 32]
model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.8
weight: 0.42
- layer_range: [0, 32]
model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: base
Open LLM Leaderboard Evaluation Results
Detailed results can be found here! Based on the listed rankings as of 4/12/24, is the top-rank 8B model.
Metric | Value |
---|---|
Avg. | 30.07 |
IFEval (0-Shot) | 80.29 |
BBH (3-Shot) | 31.61 |
MATH Lvl 5 (4-Shot) | 21.15 |
GPQA (0-shot) | 6.94 |
MuSR (0-shot) | 8.24 |
MMLU-PRO (5-shot) | 32.18 |
Inference Settings
Personal recommendations are to use a i1-Q4_K_M quant with these settings:
num_ctx = 4096
repeat_penalty = 1.2
temperature = 0.85
tfs_z = 1.4
top_k = 0 # Change to 40+ if you're roleplaying
top_p = 1 # Change to 0.9 if top_k > 0
Other recommendations can be found on this paper on mobile LLMs, this paper on balancing model parameters, and this Reddit post about tweaking Llama 3.1 parameters.