English
Protein_Language_Model
MSA Generation
MSAGPT / utils /chat.py
Bo1015's picture
Upload 27 files
0dce0bd verified
import os
import torch
import stat
import re
import time
import argparse
import numpy as np
from functools import partial
from typing import List, Tuple
import torch.distributed as dist
from sat.helpers import print_rank0
from sat import mpu, get_args, get_tokenizer
from sat.generation.utils import timed_name, generate_continually
from sat.generation.autoregressive_sampling import update_mems, get_masks_and_position_ids_default
from .utils import move_cursor_up, move_cursor_down
def get_masks_and_position_ids(seq, msa_len, max_gen_length, gmask=False):
context_length = seq.shape[1]
query_len = msa_len
max_msa_num = (max_gen_length - 2) // query_len
max_gen_length = max_msa_num * query_len + 2
tokens = torch.nn.functional.pad(seq, (0, max_gen_length - context_length), mode="constant", value=-1)
attention_mask = torch.ones((1, tokens.shape[-1], tokens.shape[-1]), device=tokens.device)
attention_mask.tril_()
attention_mask.unsqueeze_(1)
attention_mask = (attention_mask < 0.5).bool()
# <gMASK> + <SOP>
position_ids = np.zeros(max_gen_length, dtype=int)
block_position_ids = np.zeros(max_gen_length, dtype=int)
pre = 0
for msa_idx in range(max_msa_num):
position_ids[(1 + pre): (1 + pre + query_len)] = np.arange(query_len, dtype = int)
block_position_ids[(1 + pre): (1 + pre + query_len)] = msa_idx
pre += query_len
position_ids = np.stack((position_ids, block_position_ids), axis=0)
position_ids = torch.from_numpy(position_ids).to(tokens.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def generation_sequence(
model,
seqs,
strategy,
max_memory_length=100000,
get_masks_and_position_ids=get_masks_and_position_ids,
stream=False,
mems=None,
**kw_args
):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
assert len(seqs.shape) == 2
# building the initial tokens, attention_mask, and position_ids
batch_size, context_length = seqs.shape
seqs, attention_mask, position_ids = get_masks_and_position_ids(seqs)
tokens = seqs[..., :context_length]
# initialize generation
counter = context_length # Last fixed index is ``counter''
index = 0 if mems is None else mems.shape[2] # Next forward starting index, also the length of cache.
num_beams = 1
# step-by-step generation
while counter < seqs.shape[1] - 1:
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
# forward
tokens = tokens.reshape(batch_size * num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size * num_beams, mems.shape[-2], mems.shape[-1]) if mems is not None else None
model.eval()
with torch.no_grad():
logits, *output_per_layers = model(
tokens[:, index:],
position_ids[..., index: counter],
attention_mask[..., index: counter, :counter], # TODO memlen
mems=mems,
**kw_args
)
mem_kv = [o['mem_kv'] for o in output_per_layers]
mems = update_mems(mem_kv, mems, max_memory_length=max_memory_length)
logits = logits[:, -1]
index = counter
counter += 1
logits = logits.reshape(batch_size, num_beams, -1)
tokens = tokens.reshape(batch_size, num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size, num_beams, mems.shape[-2], mems.shape[-1])
tokens, mems = strategy.forward(logits, tokens, mems)
if len(tokens.shape) == 3 and num_beams == 1:
num_beams = tokens.shape[1]
position_ids = position_ids.unsqueeze(1).expand(batch_size, num_beams, 2, -1).reshape(batch_size * num_beams, 2, -1)
attention_mask_shape = attention_mask.shape[-3:]
attention_mask = attention_mask.unsqueeze(1).expand(batch_size, num_beams, -1, -1, -1).reshape(
batch_size * num_beams, *attention_mask_shape)
if strategy.is_done:
break
return strategy.finalize(tokens, mems)
def stream_generation_sequence(
model,
seqs,
strategy,
max_memory_length=100000,
get_masks_and_position_ids=get_masks_and_position_ids,
stream=False,
mems=None,
**kw_args
):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
assert len(seqs.shape) == 2
# building the initial tokens, attention_mask, and position_ids
batch_size, context_length = seqs.shape
seqs, attention_mask, position_ids = get_masks_and_position_ids(seqs)
tokens = seqs[..., :context_length]
# initialize generation
counter = context_length # Last fixed index is ``counter''
index = 0 if mems is None else mems.shape[2] # Next forward starting index, also the length of cache.
num_beams = 1
# step-by-step generation
while counter < seqs.shape[1] - 1:
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
# forward
tokens = tokens.reshape(batch_size * num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size * num_beams, mems.shape[-2], mems.shape[-1]) if mems is not None else None
model.eval()
with torch.no_grad():
logits, *output_per_layers = model(
tokens[:, index:],
position_ids[..., index: counter],
attention_mask[..., index: counter, :counter], # TODO memlen
mems=mems,
**kw_args
)
mem_kv = [o['mem_kv'] for o in output_per_layers]
mems = update_mems(mem_kv, mems, max_memory_length=max_memory_length)
logits = logits[:, -1]
index = counter
counter += 1
logits = logits.reshape(batch_size, num_beams, -1)
tokens = tokens.reshape(batch_size, num_beams, -1)
mems = mems.reshape(mems.shape[0], batch_size, num_beams, mems.shape[-2], mems.shape[-1])
tokens, mems = strategy.forward(logits, tokens, mems, is_first=False)
if len(tokens.shape) == 3 and num_beams == 1:
num_beams = tokens.shape[1]
position_ids = position_ids.unsqueeze(1).expand(batch_size, num_beams, 2, -1).reshape(batch_size * num_beams, 2, -1)
attention_mask_shape = attention_mask.shape[-3:]
attention_mask = attention_mask.unsqueeze(1).expand(batch_size, num_beams, -1, -1, -1).reshape(
batch_size * num_beams, *attention_mask_shape)
yield tokens, mems
if strategy.is_done:
break
def autoregressive_sampling(args, raw_text: str, model, tokenizer, strategy, stream=False) -> Tuple[List[str], List[str], List[List[str]]]:
# add MASK
generation_mask = "[gMASK]"
seq = []
msa_len = len(raw_text[0]) + 1
seq += [tokenizer.get_command(generation_mask)] + [tokenizer.get_command("sop")]
for each in raw_text:
seq += tokenizer.tokenize(each) + [tokenizer.get_command('<M>')]
output_list = [seq]
num_output = args.num_beams if args.sampling_strategy == "BeamSearchStrategy" else 1
seq = output_list[0]
# detect mask position
mask_token = tokenizer.get_command(generation_mask)
mask_position = seq.index(mask_token)
last_pos, answers, blanks, output_list = (
[0] * num_output,
["" for _ in range(num_output)],
[[] for _ in range(num_output)],
[]
)
icl_msas = len(raw_text)
input_seq = torch.tensor(
[seq],
dtype = torch.long,
device=args.device,
)
if args.stream_chat:
if args.chinese:
print(f"{'生成的MSA'.center(20, '*')}", flush=True)
else:
print(f"{'Virtual MSA'.center(20, '*')}", flush=True)
output_stream = stream_generation_sequence(
model = model,
seqs = input_seq,
strategy=strategy,
get_masks_and_position_ids=partial(
get_masks_and_position_ids,
msa_len = msa_len,
max_gen_length=args.max_gen_length,
gmask=True
)
)
offset = -1
for tmp_res, mems in output_stream:
if isinstance(tmp_res, torch.Tensor):
output = tmp_res.tolist()
output_list = output[0]
for i in range(len(output_list)):
output = output_list[i].tolist() if isinstance(output_list[i], torch.Tensor) else output_list[i]
bog = output.index(tokenizer.get_command("sop"))
try:
unfinished = output.index(-1)
except ValueError:
unfinished = len(output)
output_list[i] = output[:mask_position] + output[bog + 1 : unfinished]
for i, output in enumerate(output_list):
if output[-1] == tokenizer.get_command("eos"):
output = output[:-1]
answers[i] = tokenizer.detokenize(output)
tmp_ret = answers[0] # only support streaming output first line.
if mpu.get_model_parallel_rank() == 0:
if not args.multiline_stream:
vit_msa = tmp_ret[offset if offset>0 else -1:]
print(vit_msa, end='', flush=True)
offset = len(tmp_ret)
else:
print_len = 0
vit_msa = tmp_ret.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
for _ in vit_msa:
print(_)
print_len += 1
move_cursor_up(print_len)
move_cursor_down(print_len)
print('\n')
output = strategy.finalize(tmp_res, mems)[0]
else:
output, _ = generation_sequence(
model = model,
seqs = input_seq,
strategy=strategy,
get_masks_and_position_ids=partial(
get_masks_and_position_ids,
msa_len = msa_len,
max_gen_length=args.max_gen_length,
gmask=True
)
)
last_pos, answers, blanks, output_list = (
[0] * num_output,
["" for _ in range(num_output)],
[[] for _ in range(num_output)],
[]
)
if isinstance(output, torch.Tensor): # different strategies
output = output.tolist()
output = output[0] # batch_size = 1
output_list.extend(output)
# clip -1s and fill back generated things into seq
for i in range(len(output_list)):
output = output_list[i].tolist() if isinstance(output_list[i], torch.Tensor) else output_list[i]
try:
unfinished = output.index(-1)
except ValueError:
unfinished = len(output)
# if output[unfinished - 1] in strategy.end_tokens:
# unfinished -= 1
bog = output.index(tokenizer.get_command("sop"))
prefix = tokenizer.detokenize(output[last_pos[i] : mask_position])
blank = tokenizer.detokenize(output[bog + 1 : unfinished])
blanks[i].append(blank)
last_pos[i] = mask_position + unfinished - (bog + 1)
output_list[i] = output[:mask_position] + output[bog + 1 : unfinished]
for i, output in enumerate(output_list):
if output[-1] == tokenizer.get_command("eos"):
output = output[:-1]
answers[i] = tokenizer.detokenize(output)
return answers
def offline_generation(args, temp, top_p, top_k, func):
os.makedirs(args.output_path, exist_ok=True)
with open(args.input_source, 'r', encoding="utf-8") as fin:
inputs = fin.readlines()
output_path = os.path.join(args.output_path, f"tmp_{temp}_p_{top_p}_k_{top_k}")
fin = open(output_path, 'w')
start_time = time.time()
for line_no, raw_text in enumerate(inputs):
if line_no % mpu.get_data_parallel_world_size() != mpu.get_data_parallel_rank():
continue
rk = dist.get_rank()
raw_text = raw_text.strip()
raw_text = raw_text.split('<M>')
main_seq = raw_text[0]
msa_len = len(main_seq) + 1
icl_msas = len(raw_text)
require_min_gen_length = msa_len * (icl_msas + 1) + 2
if args.max_gen_length < require_min_gen_length:
args.max_gen_length = require_min_gen_length # at least generate 1 msa.
if mpu.get_model_parallel_rank() == 0:
print(f'Processing No. {line_no} on model group {rk} input main seq: "{main_seq}" few-shot prompt: "{"<M>".join(raw_text[1:])}"')
if len(raw_text) == 0:
continue
ret = func(raw_text)
if mpu.get_model_parallel_rank() == 0:
if args.print_all_beams:
for idx, vit_msa in enumerate(ret):
vit_msa = vit_msa.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
vit_msa_len = len(vit_msa)
vit_msa_str = '<M>'.join(vit_msa)
print('Beam: {} #Vitural Length:{} | MSA: "{}" | (Temp, P, K)=({}, {}, {}) | Taken time {:.2f}'.format(idx, vit_msa_len, vit_msa_str, temp, top_p, top_k, time.time() - start_time), flush=True)
else:
vit_msa = ret[0]
vit_msa = vit_msa.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
vit_msa_len = len(vit_msa)
vit_msa_str = '<M>'.join(vit_msa)
fin.write(f"{vit_msa_str}"+'\n')
print('#Vitural Length:{} | MSA: "{}" | (Temp, P, K)=({}, {}, {}) | Taken time {:.2f}'.format(vit_msa_len, vit_msa_str, temp, top_p, top_k, time.time() - start_time), flush=True)
print()
fin.flush()
dist.barrier()
fin.close()
def online_generation(args, query, temp, top_p, top_k, func):
raw_text = query.strip()
raw_text = raw_text.split('<M>')
main_seq = raw_text[0]
msa_len = len(main_seq) + 1
icl_msas = len(raw_text)
require_min_gen_length = msa_len * (icl_msas + 1) + 2
if args.max_gen_length < require_min_gen_length:
args.max_gen_length = require_min_gen_length # at least generate 1 msa.
ret = func(raw_text)
response = []
if mpu.get_model_parallel_rank() == 0:
for idx, vit_msa in enumerate(ret):
vit_msa = vit_msa.split('[<M>]')[icl_msas:]
vit_msa = [_ for _ in vit_msa if len(_) > 0]
response.append(vit_msa)
return response
def chat_api(args, model, tokenizer, strategy, query=None): # TODO: Steam chat
if args.input_source == 'chat':
assert query is not None
ret = online_generation(args, query, temp=args.temperature, top_p = args.top_p, top_k = args.top_k, func = partial(autoregressive_sampling, args, model = model, tokenizer = tokenizer, strategy = strategy))
return ret
else:
assert not args.stream_chat, "Offline Generation don't support streaming output."
offline_generation(args, temp=args.temperature, top_p = args.top_p, top_k = args.top_k, func = partial(autoregressive_sampling, args, model = model, tokenizer = tokenizer, strategy = strategy))