chatglm-6b / configuration_chatglm.py
ltcs15's picture
add custom onnx export config
c54139a
raw
history blame
18.1 kB
""" ChatGLM model configuration """
import torch
from collections import OrderedDict
from typing import List, Mapping, Optional, Any
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
logger = logging.get_logger(__name__)
class ChatGLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used
to control the model outputs. Read the documentation from [`PretrainedConfig`]
for more information.
Args:
vocab_size (`int`, *optional*, defaults to 150528):
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~ChatGLMModel`] or
[`~TFChatGLMModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
inner_hidden_size (`int`, *optional*, defaults to 16384):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
max_sequence_length (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from configuration_chatglm import ChatGLMConfig
>>> from modeling_chatglm import ChatGLMModel
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
>>> configuration = ChatGLMConfig()
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
>>> model = ChatGLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "chatglm"
def __init__(
self,
vocab_size=150528,
hidden_size=4096,
num_layers=28,
num_attention_heads=32,
layernorm_epsilon=1e-5,
use_cache=False,
bos_token_id=150004,
eos_token_id=150005,
mask_token_id=150000,
gmask_token_id=150001,
pad_token_id=0,
max_sequence_length=2048,
inner_hidden_size=16384,
position_encoding_2d=True,
quantization_bit=0,
pre_seq_len=None,
prefix_projection=False,
**kwargs
):
self.num_layers = num_layers
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.max_sequence_length = max_sequence_length
self.layernorm_epsilon = layernorm_epsilon
self.inner_hidden_size = inner_hidden_size
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.mask_token_id = mask_token_id
self.gmask_token_id = gmask_token_id
self.position_encoding_2d = position_encoding_2d
self.quantization_bit = quantization_bit
self.pre_seq_len = pre_seq_len
self.prefix_projection = prefix_projection
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs
)
class ChatGLMOnnxConfig(OnnxConfigWithPast):
r"""
This class is the custom configuration of a ChatGLMModel needed in exporting model to ONNX.
Currently this need to pre-fix several model struct in modeling_chatglm.py
Also there is still a TODO list of current ChatGLMOnnxConfig:
1. add support for batch_size > 1
2. add support for use_past
in modeling_chatglm.py and its attention_fn function,we need to change several view into
torch tensor action since reshape param may get frozen into constant in onnx model.
here is the code:
```python
>>> def attention_fn(
>>> self,
>>> query_layer,
>>> key_layer,
>>> value_layer,
>>> attention_mask,
>>> hidden_size_per_partition,
>>> layer_id,
>>> layer_past=None,
>>> scaling_attention_score=True,
>>> use_cache=False,
>>> ):
>>> if layer_past is not None:
>>> past_key, past_value = layer_past[0], layer_past[1]
>>> key_layer = torch.cat((past_key, key_layer), dim=0)
>>> value_layer = torch.cat((past_value, value_layer), dim=0)
>>>
>>> # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
>>> seq_len, b, nh, hidden_size = key_layer.shape
>>>
>>> if use_cache:
>>> present = (key_layer, value_layer)
>>> else:
>>> present = None
>>>
>>> query_key_layer_scaling_coeff = float(layer_id + 1)
>>> if scaling_attention_score:
>>> query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
>>>
>>> # ===================================
>>> # Raw attention scores. [b, np, s, s]
>>> # ===================================
>>>
>>> # [b, np, sq, sk]
>>> # # output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
>>>
>>> # [sq, b, np, hn] -> [sq, b * np, hn]
>>> # query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
>>> query_layer = query_layer.flatten(start_dim=1, end_dim=2)
>>>
>>> # [sk, b, np, hn] -> [sk, b * np, hn]
>>> # key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
>>> key_layer = key_layer.flatten(start_dim=1, end_dim=2)
>>>
>>> matmul_result = torch.zeros(
>>> 1, 1, 1,
>>> dtype=query_layer.dtype,
>>> device=query_layer.device,
>>> )
>>>
>>> matmul_result = torch.baddbmm(
>>> matmul_result,
>>> query_layer.transpose(0, 1), # [b * np, sq, hn]
>>> key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
>>> beta=0.0,
>>> alpha=1.0,
>>> )
>>>
>>> # [b * np, sq, sk] -> [b, np, sq, sk]
>>> # attention_scores = matmul_result.view(*output_size)
>>> attention_scores = matmul_result.unsqueeze(0)
>>>
>>> if self.scale_mask_softmax:
>>> self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
>>> attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
>>> else:
>>> # if not (attention_mask == 0).all():
>>> # # if auto-regressive, skip
>>> attention_scores.masked_fill_(attention_mask, -10000.0)
>>> dtype = attention_scores.dtype
>>> attention_scores = attention_scores.float()
>>> attention_scores = attention_scores * query_key_layer_scaling_coeff
>>>
>>> attention_probs = F.softmax(attention_scores, dim=-1)
>>>
>>> attention_probs = attention_probs.type(dtype)
>>>
>>> # =========================
>>> # Context layer. [sq, b, hp]
>>> # =========================
>>>
>>> # value_layer -> context layer.
>>> # [sk, b, np, hn] --> [b, np, sq, hn]
>>>
>>> # context layer shape: [b, np, sq, hn]
>>> # output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
>>>
>>> # change view [sk, b * np, hn]
>>> # value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
>>> value_layer = value_layer.flatten(start_dim=1, end_dim=2)
>>>
>>> # change view [b * np, sq, sk]
>>> # attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
>>> attention_probs = attention_probs.flatten(start_dim=0, end_dim=1)
>>>
>>> # matmul: [b * np, sq, hn]
>>> context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
>>>
>>> # change view [b, np, sq, hn]
>>> # context_layer = context_layer.reshape(b, np, sq, hidden_size)
>>> context_layer = context_layer.unsqueeze(0)
>>>
>>> # [b, np, sq, hn] --> [sq, b, np, hn]
>>> context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
>>>
>>> # [sq, b, np, hn] --> [sq, b, hp]
>>> # new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
>>> # context_layer = context_layer.view(*new_context_layer_shape)
>>> context_layer = context_layer.flatten(start_dim=2)
>>>
>>> outputs = (context_layer, present, attention_probs)
>>>
>>> return outputs
'''
mainly aviod using view with dynamic size
after change the modeling_chatglm.py, you can simply use following code to export and test the onnx model
```python
>>> from pathlib import Path
>>> from transformers import AutoTokenizer, AutoModel
>>> from transformers.onnx import export, validate_model_outputs
>>>
>>> # load model
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
>>> pt_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
>>> pt_model = pt_model.float() # only tested in CPU for now
>>> pt_model.eval()
>>> # define path for saving onnx model
>>> onnx_path = Path(f"model/chatglm-6b.onnx")
>>> onnx_path.parent.mkdir(exist_ok=True)
>>> # convert model to onnx
>>> onnx_config_chatglm = ChatGLMOnnxConfig(pt_model.config, task="causal-lm")
>>> onnx_inputs, onnx_outputs = export(tokenizer, pt_model,
>>> onnx_config_chatglm, onnx_config_chatglm.default_onnx_opset,
>>> onnx_path)
>>> # test onnx model
>>> validate_model_outputs(onnx_config_chatglm, tokenizer, pt_model, onnx_path, onnx_outputs, atol=1e-4)
```
"""
# TODO support dynamic batch size
default_fixed_batch = 1
def __init__(
self,
config: PretrainedConfig,
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
# TODO support use_past
# self.fill_with_past_key_values_(common_inputs, direction="inputs")
# common_inputs["attention_mask"] = \
# {0: "batch", 1: "past_sequence + sequence", 2: "past_sequence + sequence"}
raise NotImplementedError('position_ids do not support past_key_values yet.')
else:
# remind the order
common_inputs["position_ids"] = {0: "batch", 2: "sequence"}
common_inputs["attention_mask"] = {0: "batch", 2: "sequence", 3: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
def get_masks(self, input_ids, device=None):
"""
reference from modeling_chatglm.get_masks
"""
batch_size, seq_length = input_ids.shape
context_lengths = [seq.tolist().index(self._config.bos_token_id) for seq in input_ids]
if device:
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
else:
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=input_ids.device)
attention_mask.tril_()
for i, context_length in enumerate(context_lengths):
attention_mask[i, :, :context_length] = 1
attention_mask.unsqueeze_(1)
attention_mask = (attention_mask < 0.5).bool()
# print("attention_mask", attention_mask.shape)
return attention_mask
def get_position_ids(self, input_ids, mask_positions, device=None, use_gmasks=None):
batch_size, seq_length = input_ids.shape
if device is None:
device = input_ids.device
if use_gmasks is None:
use_gmasks = [False] * batch_size
context_lengths = [seq.tolist().index(self._config.bos_token_id) for seq in input_ids]
if self._config.position_encoding_2d:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
for i, context_length in enumerate(context_lengths):
position_ids[i, context_length:] = mask_positions[i]
block_position_ids = [torch.cat((
torch.zeros(context_length, dtype=torch.long, device=device),
torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
)) for context_length in context_lengths]
block_position_ids = torch.stack(block_position_ids, dim=0)
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
else:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
for i, context_length in enumerate(context_lengths):
if not use_gmasks[i]:
position_ids[context_length:] = mask_positions[i]
# print("position_ids", position_ids.shape)
return position_ids
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = default_fixed_batch,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=self.default_fixed_batch, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# check if the mode is using fixed batch size
if batch_size != self.default_fixed_batch:
logger.warning('batch size is not fixed, force change into fixed batch size: %d.'
% self.default_fixed_batch)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
# TODO support use_past
# import torch
#
# batch, seqlen = common_inputs["input_ids"].shape
# # Not using the same length for past_key_values
# past_key_values_length = seqlen + 2
# past_shape = (
# batch,
# self.num_attention_heads,
# past_key_values_length,
# self._config.hidden_size // self.num_attention_heads,
# )
# ordered_inputs["past_key_values"] = [
# (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
# ]
raise NotImplementedError('position_ids do not support past_key_values yet.')
# Need to add the attention_mask manually
# 1. add attention_mask
ordered_inputs["attention_mask"] = self.get_masks(common_inputs["input_ids"])
# 2. add position_ids
MASK, gMASK = self._config.mask_token_id, self._config.gmask_token_id
seqs = common_inputs["input_ids"].tolist()
mask_positions, use_gmasks = [], []
for seq in seqs:
mask_token = gMASK if gMASK in seq else MASK
use_gmask = mask_token == gMASK
mask_positions.append(seq.index(mask_token))
use_gmasks.append(use_gmask)
ordered_inputs["position_ids"] = self.get_position_ids(common_inputs["input_ids"],
mask_positions, use_gmasks=use_gmasks)
if self.use_past:
# mask_dtype = ordered_inputs["attention_mask"].dtype
# ordered_inputs["attention_mask"] = torch.cat(
# [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
# )
raise NotImplementedError('position_ids do not support past_key_values yet.')
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13