wav2vec2-base-asr
This model is a fine-tuned version of rinna/japanese-wav2vec2-base on the common_voice_11_0 dataset for ASR tasks.
This model can only predict Hiragana.
Acknowledgments
This model's fine-tuning approach was inspired by and references the training methodology used in vumichien/wav2vec2-large-xlsr-japanese-hiragana.
Training Procedure
Fine-tuning on the common_voice_11_0 dataset led to the following results:
Step | Training Loss | Validation Loss | WER |
---|---|---|---|
1000 | 6.088100 | 3.452597 | 1.000000 |
2000 | 2.816600 | 0.756278 | 0.263624 |
3000 | 0.837600 | 0.471486 | 0.185915 |
4000 | 0.624900 | 0.420854 | 0.159801 |
5000 | 0.533300 | 0.392494 | 0.149141 |
6000 | 0.490000 | 0.394669 | 0.144826 |
7000 | 0.441600 | 0.379999 | 0.141807 |
Training hyperparameters
The training hyperparameters remained consistent throughout the fine-tuning process:
- learning_rate: 1e-4
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- num_train_epochs: 20
- warmup_steps: 2000
- lr_scheduler_type: linear
How to evaluate the model
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import torch
import torchaudio
import librosa
import numpy as np
import re
import MeCab
import pykakasi
from evaluate import load
model = Wav2Vec2ForCTC.from_pretrained('TKU410410103/wav2vec2-base-japanese-asr')
processor = Wav2Vec2Processor.from_pretrained("TKU410410103/wav2vec2-base-japanese-asr")
# load dataset
test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test')
remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']]
test_dataset = test_dataset.remove_columns(remove_columns)
# resample
def process_waveforms(batch):
speech_arrays = []
sampling_rates = []
for audio_path in batch['audio']:
speech_array, _ = torchaudio.load(audio_path['path'])
speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000)
speech_arrays.append(speech_array_resampled)
sampling_rates.append(16000)
batch["array"] = speech_arrays
batch["sampling_rate"] = sampling_rates
return batch
# hiragana
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()
def prepare_char(batch):
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
return batch
resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4)
eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4)
# begin the evaluation process
wer = load("wer")
cer = load("cer")
def evaluate(batch):
inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"]
batch_size = 16
result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size)
wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"])
cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"])
print("WER: {:2f}%".format(100 * wer_result))
print("CER: {:2f}%".format(100 * cer_result))
Test results
The final model was evaluated as follows:
On common_voice_11_0:
- WER: 14.177284%
- CER: 6.462501%
On reazonspeech(tiny):
- WER: 40.864413%
- CER: 29.367348%
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1
- Downloads last month
- 587
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train TKU410410103/wav2vec2-base-japanese-asr
Evaluation results
- Test WER on common_voice_11_0self-reported14.177
- Test CER on common_voice_11_0self-reported6.463
- Test WER on Reazonspeechself-reported40.864
- Test CER on Reazonspeechself-reported29.367