File size: 5,017 Bytes
3636af5 947aeca 3636af5 de7c257 947aeca de7c257 947aeca de7c257 947aeca 0e95bd7 947aeca 0e95bd7 947aeca 3636af5 de7c257 589ba25 1e8e38d de7c257 1e8e38d de7c257 0e95bd7 de7c257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
language:
- ja
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-base-japanese-asr
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: common_voice_11_0
type: common_voice
args: ja
metrics:
- type: wer
value: 14.177284%
name: Test WER
- type: cer
value: 6.462501%
name: Test CER
---
# wav2vec2-base-asr
This model is a fine-tuned version of [rinna/japanese-wav2vec2-base](https://huggingface.co/rinna/japanese-wav2vec2-base) on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja) for ASR tasks.
## Acknowledgments
This model's fine-tuning approach was inspired by and references the training methodology used in [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana).
## Training Procedure
Fine-tuning on the common_voice_11_0 dataset led to the following results:
### Training hyperparameters
The training hyperparameters remained consistent throughout the fine-tuning process:
- learning_rate: 1e-4
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- num_train_epochs: 20
- warmup_steps: 2000
- lr_scheduler_type: linear
### How to evaluate the model
```python
from transformers import Wav2vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import torchaudio
import librosa
import numpy as np
import re
import MeCab
import pykakasi
from evaluate import load
model = Wav2vec2ForCTC.from_pretrained('TKU410410103/wav2vec2-base-japanese-asr')
processor = Wav2Vec2Processor.from_pretrained("TKU410410103/wav2vec2-base-japanese-asr")
# load dataset
test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test')
remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']]
test_dataset = test_dataset.remove_columns(remove_columns)
# resample
def process_waveforms(batch):
speech_arrays = []
sampling_rates = []
for audio_path in batch['audio']:
speech_array, _ = torchaudio.load(audio_path['path'])
speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000)
speech_arrays.append(speech_array_resampled)
sampling_rates.append(16000)
batch["array"] = speech_arrays
batch["sampling_rate"] = sampling_rates
return batch
# hiragana
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()
def prepare_char(batch):
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
return batch
resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4)
eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4)
# begin the evaluation process
wer = load("wer")
cer = load("cer")
def evaluate(batch):
inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"]
batch_size = 16
result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size)
wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"])
cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"])
print("WER: {:2f}%".format(100 * wer_result))
print("CER: {:2f}%".format(100 * cer_result))
```
### Test results
The final model was evaluated as follows:
On common_voice_11_0:
- WER: 14.177284%
- CER: 6.462501%
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1 |