File size: 5,906 Bytes
3636af5
947aeca
 
3636af5
de7c257
 
947aeca
 
de7c257
 
 
 
 
 
 
 
947aeca
de7c257
 
 
 
 
947aeca
a8326c9
947aeca
 
a8326c9
947aeca
2285fb5
 
 
 
 
 
 
 
 
 
a8326c9
2285fb5
 
a8326c9
3636af5
de7c257
 
 
 
 
4678e6d
 
de7c257
 
 
 
 
 
 
 
2285fb5
 
 
 
 
 
 
 
 
de7c257
 
 
 
 
 
 
 
 
 
589ba25
1e8e38d
de7c257
 
 
 
 
8faae81
de7c257
298a288
de7c257
 
 
 
 
 
 
 
8faae81
de7c257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e95bd7
 
2285fb5
 
 
 
de7c257
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
language:
- ja
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-base-japanese-asr
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: common_voice_11_0
      type: common_voice
      args: ja
    metrics:
    - type: wer
      value: 14.177284
      name: Test WER
    - type: cer
      value: 6.462501
      name: Test CER
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Reazonspeech
      type: custom
      args: ja
    metrics:
    - name: Test WER
      type: wer
      value: 40.864413
    - name: Test CER
      type: cer
      value: 29.367348
---

# wav2vec2-base-asr

This model is a fine-tuned version of [rinna/japanese-wav2vec2-base](https://huggingface.co/rinna/japanese-wav2vec2-base) on the [common_voice_11_0 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/ja) for ASR tasks.

This model can only predict Hiragana.

## Acknowledgments

This model's fine-tuning approach was inspired by and references the training methodology used in [vumichien/wav2vec2-large-xlsr-japanese-hiragana](https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana).

## Training Procedure

Fine-tuning on the common_voice_11_0 dataset led to the following results:

| Step  | Training Loss | Validation Loss | WER      |
|-------|---------------|-----------------|----------|
| 1000  | 6.088100      | 3.452597        | 1.000000 |
| 2000  | 2.816600      | 0.756278        | 0.263624 |
| 3000  | 0.837600      | 0.471486        | 0.185915 |
| 4000  | 0.624900      | 0.420854        | 0.159801 |
| 5000  | 0.533300      | 0.392494        | 0.149141 |
| 6000  | 0.490000      | 0.394669        | 0.144826 |
| 7000  | 0.441600      | 0.379999        | 0.141807 |

### Training hyperparameters

The training hyperparameters remained consistent throughout the fine-tuning process:

- learning_rate: 1e-4
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- num_train_epochs: 20
- warmup_steps: 2000
- lr_scheduler_type: linear

### How to evaluate the model

```python
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import torch
import torchaudio
import librosa
import numpy as np
import re
import MeCab
import pykakasi
from evaluate import load

model = Wav2Vec2ForCTC.from_pretrained('TKU410410103/wav2vec2-base-japanese-asr')
processor = Wav2Vec2Processor.from_pretrained("TKU410410103/wav2vec2-base-japanese-asr")

# load dataset
test_dataset = load_dataset('mozilla-foundation/common_voice_11_0', 'ja', split='test')
remove_columns = [col for col in test_dataset.column_names if col not in ['audio', 'sentence']]
test_dataset = test_dataset.remove_columns(remove_columns)

# resample
def process_waveforms(batch):
    speech_arrays = []
    sampling_rates = []

    for audio_path in batch['audio']:
        speech_array, _ = torchaudio.load(audio_path['path'])
        speech_array_resampled = librosa.resample(np.asarray(speech_array[0].numpy()), orig_sr=48000, target_sr=16000)
        speech_arrays.append(speech_array_resampled)
        sampling_rates.append(16000)

    batch["array"] = speech_arrays
    batch["sampling_rate"] = sampling_rates

    return batch

# hiragana
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
          "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
          "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
          "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
          "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()

def prepare_char(batch):
    batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
    batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
    return batch


resampled_eval_dataset = test_dataset.map(process_waveforms, batched=True, batch_size=50, num_proc=4)
eval_dataset = resampled_eval_dataset.map(prepare_char, num_proc=4)

# begin the evaluation process
wer = load("wer")
cer = load("cer")

def evaluate(batch):
    inputs = processor(batch["array"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

columns_to_remove = [column for column in eval_dataset.column_names if column != "sentence"]
batch_size = 16
result = eval_dataset.map(evaluate, remove_columns=columns_to_remove, batched=True, batch_size=batch_size)

wer_result = wer.compute(predictions=result["pred_strings"], references=result["sentence"])
cer_result = cer.compute(predictions=result["pred_strings"], references=result["sentence"])

print("WER: {:2f}%".format(100 * wer_result))
print("CER: {:2f}%".format(100 * cer_result))
```

### Test results
The final model was evaluated as follows:

On common_voice_11_0:
- WER: 14.177284%
- CER: 6.462501%

On reazonspeech(tiny):
- WER: 40.864413%
- CER: 29.367348%
### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1