Visualize in Weights & Biases

Mistral-7B-Instruct-v0.2-MI-2e-5

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the princeton-nlp/mistral-instruct-ultrafeedback dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5846
  • Rewards/chosen: -0.8695
  • Rewards/rejected: -0.9117
  • Rewards/accuracies: 0.5559
  • Rewards/margins: 0.0422
  • Logps/rejected: -0.9117
  • Logps/chosen: -0.8695
  • Logits/rejected: -2.8388
  • Logits/chosen: -2.8404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.5218 0.8573 400 1.5846 -0.8695 -0.9117 0.5559 0.0422 -0.9117 -0.8695 -2.8388 -2.8404

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for TTTXXX01/Mistral-7B-Instruct-v0.2-MI-2e-5

Finetuned
(915)
this model

Dataset used to train TTTXXX01/Mistral-7B-Instruct-v0.2-MI-2e-5